Skip to main content

Stereotactic Body Radiotherapy/Stereotactic Ablative Body Radiotherapy for Lung Cancer

  • Chapter
  • First Online:
Computational Surgery and Dual Training

Abstract

Technological advances in radiation oncology have led to clinical implementation of novel treatment modality. Stereotactic body radiotherapy (SBRT)/stereotactic ablative body radiotherapy (SABR) is an emerging treatment paradigm as a result of image-guidance technology and more sophisticated computational treatment planning system. SBRT/SABR, an example of computational radiosurgery, is a continuum of advances in computational surgery. The role of SBRT/SABR is most important in the management of lung cancer for early primary lung cancer and in oligometastatic lung disease. SBRT/SABR combines the challenges of patient/tumor/normal tissues motion with that of meeting the stringent dosimetric requirements of stereotactic radiosurgery (SRS). Target delineation, image guidance, patient immobilization, computer-assisted treatment planning, and delivery are essential in the safe and successful practice of SBRT/SABR. Radio-biologic rationale, technical and clinical aspects of SBRT/SABR in the treatment of both primary and metastatic lung cancer as well as the future challenges will be addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lax I, Blomgren H, Naslund I et al (1994) Stereotactic radiotherapy of malignancies in the abdomen. Acta Oncol 33:677–683

    Article  Google Scholar 

  2. Sandler HM, Curren WJ, Turrisi AT et al (1990) The influence of tumor size and pre-treatment staging on outcome following radiation therapy alone for stage I non-small cell lung cancer. Int J Radiat Oncol Biol Phys 19(1):9–13

    Article  Google Scholar 

  3. Noordijk EM, Poest CE, Hermans J et al (1988) Radiotherapy as an alternative to surgery in elderly patients with resectable lung cancer. Radiother Oncol 13(2):83–89

    Article  Google Scholar 

  4. Sibley GS, Jamieson TA, Marks LB et al (1998) Radiotherapy alone for medically inoperable stage I non-small-cell lung cancer: the Duke experience. Int J Radiat Oncol Biol Phys 40: 149–154

    Article  Google Scholar 

  5. Fakiris AJ, McGarry RC, Yiannoutsos CT et al (2009) Stereotactic body radiation therapy for early-stage non-small-cell lung carcinoma: four-year results of a prospective phase II study. Int J Radiat Oncol Biol Phys 75:677–682

    Article  Google Scholar 

  6. Onishi H, Shirato H, Nagata Y et al (2007) Hypofractionated stereotactic radiotherapy (HypoFXSRT) for stage I non-small cell lung cancer: updated results of 257 patients in a Japanese multi-institutional study. J Thorac Oncol 2:S94–S100

    Article  Google Scholar 

  7. Siva S, MacManus M, Ball D (2010) Stereotactic radiotherapy for pulmonary oligometastases: a systematic review. J Thorac Oncol 5(7):1091–1099

    Google Scholar 

  8. Wang S, Liao Z, Wei X et al (2006) Analysis of clinical and dosimetric factors associated with treatment-related pneumontis (TRP) in patients with non-small-cell lung cancer (NSCLC) treated with concurrent chemotherapy and three-dimensional conformal radiotherapy (3D-CRT). Int J Radiat Oncol Biol Phys 66:1399–1407

    Article  Google Scholar 

  9. Timmerman R, McGarry R, Yiannoutsos C et al (2006) Excessive toxicity when treating central tumors in a phase II study of stereotactic body radiation therapy for medically inoperable early-stage lung cancer. J Clin Oncol 24:4833–4839

    Article  Google Scholar 

  10. Timmerman RD, Paulus R, Galvin J et al (2010) Stereotactic body radiation therapy for inoperable early-stage lung cancer. JAMA 303:1070–1076

    Article  Google Scholar 

  11. Senan S, Haasbeek CJ, Antonisse ME et al (2009) Outcomes of stereotactic body radiotherapy (SBRT) in 175 patients with stage I NSCLC aged 75 years and older. J Clin Oncol 27:15s (suppl; abstr 9545)

    Article  Google Scholar 

  12. Haasbeek CJ, Lagerwaard FJ, Antonisse ME et al (2010) Stage I non-small cell lung cancer in patients aged > or = 75 years: outcomes after stereotactic radiotherapy. Cancer 116(2): 406–414

    Article  Google Scholar 

  13. Baumann P, Nyman J, Hoyer M et al (2009) Outcome in a prospective phase II trial of medically inoperable stage I non-small-cell lung cancer patients treated with stereotactic body radiotherapy. J Clin Oncol 27:3290–3296

    Article  Google Scholar 

  14. Onishi H, Araki Y, Shirato H et al (2009) Stereotactic hypofractionated high-dose irradiation for stage I non-small cell lung carcinoma: clinical outcomes in 245 subjects in a Japanese multi-institutional study. Cancer 101:1623–1631

    Article  Google Scholar 

  15. Chansky K, Sculier JP, Crowley JJ et al (2009) The IASLC lung cancer staging project: prognostic factors and pathologic TNM stage in surgically managed non-small cell lung cancer. J Thorac Oncol 4(7):792–801

    Article  Google Scholar 

  16. Kiser AC, Detterbeck FC (2001) General aspects of surgical treatment. In: Detterbeck FC, Rivera MP, Socinski M, Rosenmann JE (eds) Diagnosis and treatment of lung cancer. WB Saunders, Philadelphia

    Google Scholar 

  17. Grills IS, Mangona VS, Welsh R et al (2010) Outcomes after stereotactic lung radiotherapy or wedge resection for stage I non-small-cell lung cancer. J Clin Oncol 28(6):928–935

    Article  Google Scholar 

  18. Hurkmans CW, Cuijpers JP, Lagerwaard FJ et al (2009) Recommendations for implementing stereotactic radiotherapy in peripheral stage IA non-small cell lung cancer: report from the quality assurance working party of the randomized phase III ROSEL study. Radiat Oncol 4:1

    Article  Google Scholar 

  19. Nagata Y, Matsuo Y, Takayama K et al (2007) Current status of stereotactic body radiotherapy for lung cancer. Int J Clin Oncol 12:3–7

    Article  Google Scholar 

  20. Hellman S, Weichselbaum RR (1995) Oligometastases. J Clin Oncol 13:8–10

    Google Scholar 

  21. Norihisa Y, Nagata Y, Takayama K et al (2008) Stereotactic body radiotherapy for olignometastatic lung tumors. Int J Radiat Oncol Biol Phys 72(2):398–403

    Article  Google Scholar 

  22. Rusthoven KE, Kavanagh BD, Burri SH et al (2009) Multi-institutional phase I/II trial of stereotactic body radiation therapy for lung metastases and tolerability of high-dose stereotactic body radiation therapy (SBRT) for the treatment of patients with one to three lung metastases. J Clin Oncol 27(10):1579–1584

    Article  Google Scholar 

  23. Zhang H, Xiao J, Li Y et al (2009) Hypofractionated stereotactic body radiation therapy for metastatic lung tumors. Int J Radiat Oncol Biol Phys 75(3):S117

    Article  Google Scholar 

  24. Ren H, Teh B (2010) Clinical outcomes of patients with malignant lung lesions treated with SBRT in five fractions. Int J Radiat Oncol Biol Phys 78(3):S524

    Article  Google Scholar 

  25. Timmerman R, Galvin J, Michalski J et al (2006) Accreditation and quality assurance for radiation therapy oncology group: multicenter clinical trials using stereotactic body radiation therapy in lung cancer. Acta Oncol 45:779–786

    Article  Google Scholar 

  26. Timmerman R, Papiez L, McGarry R et al (2003) Extracranial stereotactic radioablation: results of a phase I study in medically inoperable stage I non-small cell lung cancer. Chest 124:946–1955

    Article  Google Scholar 

  27. Hara R, Itami J, Komiyama T et al (2004) Serum levels of KL-6 for predicting the occurrence of radiation pneumonitis after stereotactic radiotherapy for lung tumors. Chest 125:340–344

    Article  Google Scholar 

  28. Yamashita H, Nakagawa K, Nakamura N et al (2007) Exceptionally high incidence of symptomatic grade 2–5 radiation pneumonitis after stereotactic radiation therapy for lung tumors. Radiat Oncol 2:21

    Article  Google Scholar 

  29. Uematsu M, Tukui T, Tahara K, Sato N, Shiota A, Wong J (2008) Long-term results of computed tomography guided hypofractionated stereotactic radiotherapy for stage I non-small cell lung cancers. Int J Radiat Oncol Biol Phys 72:S37

    Article  Google Scholar 

  30. Chang JY, Balter PA, Dong L et al (2008) Stereotactic body radiation therapy in centrally and superiorly located stage I or isolated recurrent non-small-cell lung cancer. Int J Radiat Oncol Biol Phys 72:967–971

    Article  Google Scholar 

  31. Hoyer M, Roed H, Hansen AT et al (2006) Prospective study on stereotactic radiotherapy of limited-stage non-small-cell lung cancer. Int J Radiat Oncol Biol Phys 66:S128–S135

    Article  Google Scholar 

  32. Lagerwaard FJ, Haasbeek CJA, Smit EF, Slotman BJ, Senan S (2008) Outcomes of risk adapted fractionated stereotactic radiotherapy for stage I non-small-cell lung cancer. Int J Radiat Oncol Biol Phys 70:685–692

    Article  Google Scholar 

  33. Zimmermann FB, Geinitz H, Schill S et al (2006) Stereotactic hypofractionated radiotherapy in stage I (T1-2N0M0) non-small-cell lung cancer (NSCLC). Acta Oncol 45:796–801

    Article  Google Scholar 

  34. Guckenberger M, Wulf J, Mueller G et al (2009) Dose–response relationship for image-guided stereotactic body radiotherapy of pulmonary tumors: relevance of 4D dose calculation. Int J Radiat Oncol Biol Phys 74:47–54

    Article  Google Scholar 

  35. Rietzel E, Chen GT, Choi NC et al (2005) Four-dimensional image-based treatment planning: target volume segmentation and dose calculation in the presence of respiratory motion. Int J Radiat Oncol Biol Phys 61:1535–1550

    Article  Google Scholar 

  36. Rietzel E, Liu AK, Doppke KP et al (2006) Design of 4D treatment planning target volumes. Int J Radiat Oncol Biol Phys 66(1):287–295

    Article  Google Scholar 

  37. Underberg RW, Lagerwaard FJ, Cuijpers JP et al (2004) Four-dimensional CT scans for treatment planning in stereotactic radiotherapy for stage I lung cancer. Int J Radiat Oncol Biol Phys 60(4):1283–1290

    Article  Google Scholar 

  38. Wang L, Hayes S, Paskalev K et al (2009) Dosimetric comparison of stereotactic body radiotherapy using 4D CT and multiphase CT images for treatment planning of lung cancer: evaluation of the impact on daily dose coverage. Radiother Oncol 91:314–324

    Article  Google Scholar 

  39. van der Geld YG, Lagerwaard FJ, van Sörnsen de Koste JR et al (2006) Reproducibility of target volumes generated using uncoached 4-dimensional CT scans for peripheral lung cancer. Radiat Oncol 1:43

    Article  Google Scholar 

  40. Guckenberger M, Wilbert J, Meyer J et al (2007) Is a single respiratory correlated 4D-CT study sufficient for evaluation of breathing motion? Int J Radiat Oncol Biol Phys 67(5):1352–1359

    Article  Google Scholar 

  41. Hurkmans CW, Lieshout MV, Schuring D et al (2011) Quality assurance of 4D-CT scan techniques in multicenter phase III trial of surgery versus stereotactic radiotherapy (radiosurgery or surgery for operable early stage (stage 1A) non-small-cell lung cancer [ROSEL] study). Int J Radiat Oncol Biol Phys 80(3):918–927

    Article  Google Scholar 

  42. Frank A, Lefkowitz D, Jaeger S et al (1995) Decision logic for retreatment of asymptomatic lung cancer recurrence based on positron emission tomography findings. Int J Radiat Oncol Biol Phys 32:1495–1512

    Article  Google Scholar 

  43. Bury T, Corhay JL, Duysinx B et al (1999) Value of FDG-PET in detecting residual or recurrent non-small cell lung cancer. Eur Respir J 14:1376–1380

    Article  Google Scholar 

  44. Inoue T, Kim EE, Komaki R et al (1995) Detecting recurrent or residual lung cancer with FDG-PET. J Nucl Med 36:788–793

    Google Scholar 

  45. van Loon J, Grutters J, Wanders R et al (2008) Follow-up with (18) FDG-PET-CT after radical radiotherapy with or without chemotherapy allows the detection of potentially curable progressive disease in non-small cell lung cancer patients: a prospective study. Eur J Cancer 45:588–595

    Article  Google Scholar 

  46. Silvestri GA, Gould MK, Margolis ML et al (2007) Noninvasive staging of non-small cell lung cancer: ACCP evidenced-based clinical practice guidelines (2nd edition). Chest 132: 178S–201S

    Article  Google Scholar 

  47. Juweid ME, Cheson BD (2006) Positron-emission tomography and assessment of cancer therapy. N Engl J Med 354:496–507

    Article  Google Scholar 

  48. Berghmans T, Dusart M, Paesmans M et al (2008) Primary tumor standardized uptake value (SUVmax) measured on fluorodeoxyglucose positron emission tomography (FDG-PET) is of prognostic value for survival in non-small cell lung cancer (NSCLC): a systematic review and meta-analysis (MA) by the European Lung Cancer Working Party for the IASLC Lung Cancer Staging Project. J Thorac Oncol 3:6–12

    Article  Google Scholar 

  49. Rosenzweig K, Greco C (2008) Non-small cell lung cancer. In: Paulino AC, Teh BS (eds) PET-CT in radiotherapy treatment planning. Saunders Elsevier, Philadelphia

    Google Scholar 

  50. Henderson MA, Hoopes DJ, Fletcher JW et al (2010) A pilot trial of serial 18F-fluorodeoxyglucose positron emission tomography in patients with medically inoperable stage I non-small-cell lung cancer treated with hypofractionated stereotactic body radiotherapy. Int J Radiat Oncol Biol Phys 76(3):789–795

    Article  Google Scholar 

  51. Coon D, Gokhale AS, Burton SA et al (2008) Fractionated stereotactic body radiation therapy in the treatment of primary, recurrent, and metastatic lung tumors: the role of positron emission tomography/computed tomography-based treatment planning. Clin Lung Cancer 9(4):217–221

    Article  Google Scholar 

  52. Hoopes DJ, Tann M, Fletcher JW et al (2007) FDG-PET and stereotactic body radiotherapy (SBRT) for stage I non-small-cell lung cancer. Lung Cancer 56:229–234

    Article  Google Scholar 

  53. Burdick MJ, Stephans KL, Reddy CA et al (2010) Maximum standardized uptake value from staging FDG-PET/CT does not predict treatment outcome for early-stage non-small-cell lung cancer treated with stereotactic body radiotherapy. Int J Radiat Oncol Biol Phys 78(4): 1033–1039

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin S. Teh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer New York

About this chapter

Cite this chapter

Ren, H., Blackmon, S., Teh, B.S. (2014). Stereotactic Body Radiotherapy/Stereotactic Ablative Body Radiotherapy for Lung Cancer. In: Garbey, M., Bass, B., Berceli, S., Collet, C., Cerveri, P. (eds) Computational Surgery and Dual Training. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8648-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-8648-0_3

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-8647-3

  • Online ISBN: 978-1-4614-8648-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics