Advertisement

A Mathematical Model for Growing Metastases on Oncologists’s Service

  • D. Barbolosi
  • A. Benabdallah
  • S. Benzekry
  • J. Ciccolini
  • C. Faivre
  • F. HubertEmail author
  • F. Verga
  • B. You
Chapter

Abstract

The dual classification of cancer as localized or metastatic disease is one of the key points in the elaboration of the best therapy for each patient. Nevertheless, many studies reveal that part of these localized diseases is already metastatic. The presence of undetectable or micro-metastases explains the necessity of adjuvant chemotherapies after resection of the primary tumor even for some T1N0M0 cancer. There is probably a continuum between these two stages.We expose here how a mathematical model of growing metastases could reflect this continuum of the disease and how such a model could help the oncologists in the choice of the treatment. This phenomenological model is based on a structured transport equations with nonlocal boundary condition describing the evolution of the density of metastasis. Thanks to this model, we forge a new numerical index, that we call Metastatic Index, able to reveal either the micro-metastatic state of the patient, or the visible metastatic one. Numerical illustrations show how this new index can be used.

Keywords

Metastases Chemotherapy Cancer Oncology service  Mathematical modeling Tumor growth Anti-angiogenic drug Vascularisation Partial differential equation Metastatic index Angiogenesis Adjuvant therapy Cytotoxic agent 

Notes

Acknowledgments

The authors were partially supported by l’Agence Nationale de la recherche under Grant ANR JC07-07-JCJC-0139-01.

References

  1. 1.
    Barbolosi D, Benabdallah A, Hubert F, Verga F (2009) Mathematical and numerical analysis for a model of growing metastatic tumors. Math Biosci 218:1–14MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Benzekry S (2011) Mathematical analysis of a two-dimensional population model of metastatic growth including angiogenesis. J Evol Equat 11(1):187–213CrossRefzbMATHGoogle Scholar
  3. 3.
    Benzekry S (2011) Mathematical and numerical analysis of the anti-angiogenic therapy in metastatic cancers. Esaim Math Model Numer Anal 46(2):207–237MathSciNetCrossRefGoogle Scholar
  4. 4.
    Elias D (2006) Rationnel de la chirurgie oncologique au sein du traitement multimodal des cancers. Bull Cancer 93:775–781Google Scholar
  5. 5.
    Hahnfeldt P, Panigraphy D, Folkman J, Hlatky L (1999) Tumor development under angiogenic signaling: a dynamical theory of tumor growth, treatment, response and postvascular dormancy. Cancer Res 59:4770–4775Google Scholar
  6. 6.
    Iwata K, Kawasaki K, Shigesada N (2000) A dynamical model for the growth and size distribution of multiple metastatic tumors. J Theor Biol 203:177–186CrossRefGoogle Scholar
  7. 7.
    Koscielny S, Tubiana M, Le MG et al (1984) Breast cancer. Relationship between the size of the primary tumour and the probability of metastatic dissemination. Br J Cancer 49:709–715CrossRefGoogle Scholar
  8. 8.
    Meille C (2009) Modélisation du risque des toxicités induites par des substances thérapeutiques. Ph.D. thesis, Université de la Méditerranée, France, 21 MarchGoogle Scholar
  9. 9.
    Meille C, Iliadis A, Barbolosi D et al (2008) An interface model for dosage adjustment connects hematotoxicity to pharmacokinetics. J Pharmacokin Pharmacodyn 35:619–633CrossRefGoogle Scholar
  10. 10.
    Peeters C, phal JR, de Geus LF, Wetphal JR et al (2005) Decrease in circulating anti-angiogenic factors after removal of primary colorectal carcinoma coincides with increased metabolic activity of liver metastases. Surgery 137:246–249Google Scholar
  11. 11.
    Verga F (2010) Modélisation mathématique du processus métastatique. Ph.D. thesis, Université de Provence, France, 23 NovemberGoogle Scholar
  12. 12.
    Verga F, You B, Benabdallah A, Hubert F, Faivre C, Mercier C, Ciccolini J, Barbolosi D (2011) Modélisation du risque d’évolution métastatique chez les patients supposés avoir une maladie localisée. Oncologie 13(8):528–533CrossRefGoogle Scholar
  13. 13.
    Viens P, Roché H, Kerbrat P et al (2001) Epirubicin-docetaxel combination in first line chemotherapy for patients with metastatic breast cancer. J Clin Oncol 24:328–335CrossRefGoogle Scholar
  14. 14.
    You B (2009) Inhibiteurs de tyrosine kinase et chimiothrapie: et si ctait seulement une question de scheduling? France Cancer, 19 janvier, 440Google Scholar
  15. 15.
    You B, Meille C, Barbolosi D, Tranchand B, Guitton J, Rioufol C, Iliadis A, Freyer G (2007). A mechanistic model predicting hematopoiesis and tumor growth to optimize docetaxel + epirubicin (ET) administration in metastatic breast cancer (MBC): phase I trial. J Clin Oncol 25:13013Google Scholar

Copyright information

© Springer New York 2014

Authors and Affiliations

  • D. Barbolosi
    • 1
  • A. Benabdallah
    • 2
  • S. Benzekry
    • 2
  • J. Ciccolini
    • 1
  • C. Faivre
    • 1
  • F. Hubert
    • 2
    Email author
  • F. Verga
    • 3
  • B. You
    • 4
  1. 1.Faculté de PharmacieUniversité de la Méditerranée, CRO2 - INSERM UMR_S 911 Marseille Cedex 5France
  2. 2.Université de Provence, UMR 6632 LATPMarseille Cedex 13France
  3. 3.Faculté de PharmacieUniversité de la Méditerrane, UMR MD3 Laboratoire de PharmacocinétiqueMarseille Cedex 5France
  4. 4.Faculté de Médecine Lyon SudUniversité Lyon 1OullinsFrance

Personalised recommendations