Quantifying the Role of Anisotropic Invasion in Human Glioblastoma

  • R. Sodt
  • R. Rockne
  • M. L. Neal
  • I. Kalet
  • K R. SwansonEmail author


Gliomas are highly invasive primary brain tumors, notorious for their recurrence after treatment, and are considered uniformly fatal. Confounding progress is the fact that there is a diffuse extent of tumor cell invasion well beyond what is visible on routine clinical imaging such as MRI. By incorporating diffusion tensor imaging (DTI) which shows the directional orientation of fiber tracts in the brain, we compare patient-specific model simulations to observed tumor growth for two patients, visually, volumetrically and spatially to quantify the effect of anisotropic diffusion on the ability to predict the actual shape and diffuse invasion of tumor as observed on MRI. The ultimate goal is the development of the best patient-specific tool for predicting brain tumor growth and invasion in individual patients, which can aid in treatment planning.


Glioblastoma Brain tumor Anisotropic invasion Radiotherapy Tumor growth Clinical imaging Cell migration Diffusion tensor imaging Axonal fibers Biopsy Mathematical modeling Partial differential equation Logistic growth 



We gratefully acknowledge the generous and timely support of the McDonnell Foundation, the Dana Foundation, the Academic Pathology Fund, the NIH/NINDS R01 NS060752 and the NIH/NCI Moffitt-UW Physical Sciences Oncology Center U54 CA143970.


  1. 1.
    Burnet NG, Lynch AG, Jefferies SJ, Price SJ, Jones PH, Antoun NM, Xuereb JH, Pohl U (2007) High grade glioma: imaging combined with pathological grade defines management and predicts prognosis. Radiother Oncol 85(3):371–378CrossRefGoogle Scholar
  2. 2.
    Fisher RA (1937) The wave of advance of advantageous genes. Ann Eugenics 7:355–369CrossRefGoogle Scholar
  3. 3.
    Harpold HL, Alvord EC, Swanson KR (2007) The evolution of mathematical modeling of glioma proliferation and invasion. J Neuropathol Exp Neurol 66(1):1–9CrossRefGoogle Scholar
  4. 4.
    Horsfield MA, Jones DK (2002) Applications of diffusion-weighted and diffusion tensor mri to white matter diseases—a review. NMR Biomed 15(7–8):570–577CrossRefGoogle Scholar
  5. 5.
    Jbabdi S, Mandonnet E, Duffau H, Capelle L, Swanson KR, Pélégrini-Issac, M, Guillevin R, Benali H (2005) Simulation of anisotropic growth of low-grade gliomas using diffusion tensor imaging. Magn Reson Med 54(3):616–624CrossRefGoogle Scholar
  6. 6.
    Le Bihan D, Mangin JF, Poupon C, Clark CA, Pappata S, Molko N, Chabriat H (2001) Diffusion tensor imaging: concepts and applications. J Magn Reson Imag 13(4):534–546CrossRefGoogle Scholar
  7. 7.
    LeVeque RJ (2007) Finite difference methods for ordinary and partial differential equations: steady-state and time-dependent problems. Society for Industrial and Applied Mathematics, Philadelphia, PA, 2007.CrossRefGoogle Scholar
  8. 8.
    Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, Burger PC, Jouvet A, Scheithauer BW, Kleihues P (2007) The 2007 who classification of tumours of the central nervous system. Acta Neuropathol 114(2):97–109CrossRefGoogle Scholar
  9. 9.
    MATLAB (2010) The MathWorks, Inc. Accessed May 2010
  10. 10.
    Mori S (2011) In-vivo human database –adam dti. Accessed May 2010
  11. 11.
    Nimsky C, Ganslandt O, Hastreiter P, Wang R, Benner T, Sorensen AG, Fahlbusch R (2005) Preoperative and intraoperative diffusion tensor imaging-based fiber tracking in glioma surgery. Neurosurgery 56(1):130–137; Discussion 138Google Scholar
  12. 12.
    Rockne R, Rockhill JK, Mrugala M, Spence AM, Kalet I, Hendrickson K, Lai A, Cloughesy T, Alvord EC, Swanson KR (2010) Predicting the efficacy of radiotherapy in individual glioblastoma patients in vivo: a mathematical modeling approach. Phys Med Biol 55(12):3271–385CrossRefGoogle Scholar
  13. 13.
    Stadlbauer A, Pólking E, Prante O, Nimsky C, Buchfelder M, Kuwert T, Linke R, Doelken M, Ganslandt O (2009) Detection of tumour invasion into the pyramidal tract in glioma patients with sensorimotor deficits by correlation of (18)f-fluoroethyl-l: -tyrosine pet and magnetic resonance diffusion tensor imaging. Acta Neurochir (Wien) 151(9):1061–1069CrossRefGoogle Scholar
  14. 14.
    Statistical Parametric Mapping 8 (SPM8) (2010) Wellcome trust centre for neuroimaging.
  15. 15.
    Swanson KR (1999) Mathematical Modeling of the Growth and Control of Tumors. Phd Thesis, University of WashingtonGoogle Scholar
  16. 16.
    Swanson KR, Alvord EC, Murray JD (2000) A quantitative model for differential motility of gliomas in grey and white matter. Cell Prolif, 33(5):317–329CrossRefGoogle Scholar
  17. 17.
    Swanson KR, Alvord EC, Murray JD (2002) Virtual brain tumours (gliomas) enhance the reality of medical imaging and highlight inadequacies of current therapy. Br J Canc 86(1): 14–18CrossRefGoogle Scholar
  18. 18.
    Swanson KR, Bridge C, Murray JD, Alvord EC (2003) Virtual and real brain tumors: using mathematical modeling to quantify glioma growth and invasion. J Neurol Sci 216(1):1–10CrossRefGoogle Scholar
  19. 19.
    Swanson KR, Chakraborty G, Wang CH, Rockne R, Harpold HL, Muzi M, Adamsen TC, Krohn KA, Spence AM (2009) Complementary but distinct roles for mri and 18f-fluoromisonidazole pet in the assessment of human glioblastomas. J Nucl Med 50(1):36–44CrossRefGoogle Scholar
  20. 20.
    Szeto MD, Chakraborty G, Hadley J, Rockne R, Muzi M, Alvord EC, Krohn KA, Spence AM, Swanson KR (2009) Quantitative metrics of net proliferation and invasion link biological aggressiveness assessed by mri with hypoxia assessed by fmiso-pet in newly diagnosed glioblastomas. Canc Res 69(10):4502–4509CrossRefGoogle Scholar
  21. 21.
    Tracqui P, Cruywagen GC, Woodward DE, Bartoo GT, Murray JD, Alvord EC (1995) A mathematical model of glioma growth: the effect of chemotherapy on spatio-temporal growth. Cell Prolif 28(1):17–31CrossRefGoogle Scholar
  22. 22.
    Wang CH, Rockhill JK, Mrugala M, Peacock DL, Lai A, Jusenius K, Wardlaw JM, Cloughesy T, Spence AM, Rockne R, Alvord EC, Swanson KR (2009) Prognostic significance of growth kinetics in newly diagnosed glioblastomas revealed by combining serial imaging with a novel biomathematical model. Canc Res 69(23):9133–9140CrossRefGoogle Scholar
  23. 23.
    Witwer BP, Moftakhar R, Hasan KM, Deshmukh P, Haughton V, Field A, Arfanakis K, Noyes J, Moritz CH, Meyerand ME, Rowley HA, Alexander AL, Badie B (2002) Diffusion-tensor imaging of white matter tracts in patients with cerebral neoplasm. J Neurosurg 97(3):568–575CrossRefGoogle Scholar

Copyright information

© Springer New York 2014

Authors and Affiliations

  • R. Sodt
    • 1
  • R. Rockne
    • 2
    • 3
  • M. L. Neal
    • 4
  • I. Kalet
    • 5
  • K R. Swanson
    • 2
    • 3
    Email author
  1. 1.Department of Computer ScienceUniversity of WashingtonSt. SeattleUSA
  2. 2.Department of Neurological SurgeryNorthwestern University, Feinberg School of MedicineChicagoUSA
  3. 3.Department of Applied MathematicsUniversity of WashingtonWashingtonUSA
  4. 4.Department of Pathology, Department of Medical Education and Biomedical InformaticsUniversity of WashingtonWashingtonUSA
  5. 5.Department of Radiation Oncology and Department of Medical Education and Biomedical InformaticsUniversity of WashingtonWashingtonUSA

Personalised recommendations