Skip to main content

Some Models for the Prediction of Tumor Growth: General Framework and Applications to Metastases in the Lung

  • Chapter
  • First Online:
Computational Surgery and Dual Training

Abstract

This chapter presents an example of an application of a mathematical model: the goal is here to help clinicians evaluate the aggressiveness of some metastases to the lung. For this matter, an adequate spatial model is described and two algorithms (one using a reduced model approach and the other one a sensitivity technique) are shown. They allow us to find reasonable values of the parameters of this model for a given patient with a sequence of medical images. The quality of the prognosis obtained through the calibrated model is then illustrated with several clinical cases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alarcón T, Byrne H, Maini P (2003) A cellular automaton model for tumour growth in inhomogeneous environment. J Theor Biol 225(2):257–274

    Article  Google Scholar 

  2. Ambrosi D, Preziosi L (2002) On the closure of mass balance models for tumor growth. Math Models Meth Appl Sci 12(05):737–754

    Article  MathSciNet  MATH  Google Scholar 

  3. Anderson ARA, Weaver AM, Cummings PT, Quaranta V (2006) Tumor morphology and phenotypic evolution driven by selective pressure from the microenvironment. Cell 127(5): 905–915

    Article  Google Scholar 

  4. Bergmann M, Bruneau CH, Iollo A (2009) Enablers for robust pod models. J Comput Phys 228:516–538

    Article  MathSciNet  MATH  Google Scholar 

  5. Billy F, Ribba B, Saut O, Morre-Trouilhet H, Colin T, Bresch D, Boissel J-P, Grenier E, Flandrois J (2009) A pharmacologically based multiscale mathematical model of angiogenesis and its use in investigating the efficacy of a new cancer treatment strategy. J Theor Biol 260(4):545–562. doi:10.1016/j.jtbi.2009.06.026

    Article  MathSciNet  Google Scholar 

  6. Bresch D, Colin T, Grenier E, Ribba B, Saut O (2009) A viscoelastic model for avascular tumor growth. Discrete Contin Dyn Syst Suppl 2009, 101–108

    MathSciNet  MATH  Google Scholar 

  7. Byrd RH, Nocedal J, Schnabe RB (1994) Representations of quasi-Newton matrices and their use in limited memory methods. Math Program 63:129–156

    Article  MATH  Google Scholar 

  8. Byrne H, Drasdo D (2009) Individual-based and continuum models of growing cell populations: a comparison. J Math Biol 58(4–5):657–687

    Article  MathSciNet  Google Scholar 

  9. Byrne HM (2010) Dissecting cancer through mathematics: from the cell to the animal model. Nat Rev Cancer 10(3):221–230

    Article  Google Scholar 

  10. Clatz O, Sermesant M, Bondiau P-Y, Delingette H, Warfield SK, Malandain G, Ayache N (2005) Realistic simulation of the 3-d growth of brain tumors in mr images coupling diffusion with biomechanical deformation. IEEE Trans Med Imaging 24(10):1334–1346

    Article  Google Scholar 

  11. Friedman A (2004) A hierarchy of cancer models and their mathematical challenges. Discrete Contin Math Syst Ser B 4(1):147–160

    Article  MATH  Google Scholar 

  12. Gatenby R, Gawlinski ET (1996) A reaction-diffusion model of cancer invasion. Cancer Res 56(24):5745–5753

    Google Scholar 

  13. Hahnfeldt P, Panigrahy D, Folkman J, Hlatky L (1999) Tumor development under angiogenic signaling. Cancer Res 59(19):4770

    Google Scholar 

  14. Hanahan D, Weinberg R (2000) The hallmarks of cancer. Cell 100(1):57–70

    Article  Google Scholar 

  15. Hanke M (1997) A regularizing Levenberg-Marquardt scheme with applications to inverse groundwater filtration problems. Inverse Probl 13:79–95

    Article  MathSciNet  MATH  Google Scholar 

  16. Hogea C, Davatzikos C, Biros G (2008) An image-driven parameter estimation problem for a reaction–diffusion glioma growth model with mass effects. J Math Biol 56(6):793–825

    Article  MathSciNet  MATH  Google Scholar 

  17. Holmes P, Lumley JL, Berkooz G (1996) Turbulence, coherent structures, dynamical systems and symmetry. Cambridge monographs on mechanics. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  18. Macklin P, Lowengrub JS (2005) Evolving interfaces via gradients of geometry-dependent interior poisson problems: application to tumor growth. J Comput Phys 203(1):191–220

    Article  MathSciNet  MATH  Google Scholar 

  19. Mansury Y, Kimura M, Lobo J, Deisboeck T (2002) Emerging patterns in tumor systems: simulating the dynamics of multicellular clusters with an agent-based spatial agglomeration model. J Theor Biol 219(3):343–370

    Article  MathSciNet  Google Scholar 

  20. Mantzaris N, Webb S, Othmer H (2004) Mathematical modeling of tumor-induced angiogenesis. J Math Biol 49(2):111–187

    Article  MathSciNet  MATH  Google Scholar 

  21. Marzouk YM, Najm HN (2009) Dimensionality reduction and polynomial chaos acceleration of Bayesian inference in inverse problems. J Comput Phys 228(6):1862–1902

    Article  MathSciNet  MATH  Google Scholar 

  22. Othmer HG, Stevens A (1997) Aggregation, blowup, and collapse: the ABC’s of taxis in reinforced random walks. SIAM J Appl Math 57(4):1044–1081

    Article  MathSciNet  MATH  Google Scholar 

  23. Reinboldt W (1993) On the sensitivity of solutions of parametrized equations. SIAM J Numer Anal 30:305–320

    Article  MathSciNet  Google Scholar 

  24. Ribba B, Saut O, Colin T, Bresch D, Grenier E, Boissel J-P (2006) A multiscale mathematical model of avascular tumor growth to investigate the therapeutic benefit of anti-invasive agents. J Theor Biol 243(4):532–541

    Article  MathSciNet  Google Scholar 

  25. Robbins RJ, Wan Q, Grewal RK, Reibke R, Gonen M, Strauss HW, Tuttle RM, Drucker W, Larson SM (2006) Real-time prognosis for metastatic thyroid carcinoma based on 2-[18F]fluoro-2-deoxy-D-glucose-positron emission tomography scanning. J Clin Endocrinol Metab 91(2):498–505

    Article  Google Scholar 

  26. Roose T, Chapman SJ, Maini PK (2007) Mathematical models of avascular tumor growth. SIAM Rev 49(2):179–208

    Article  MathSciNet  MATH  Google Scholar 

  27. Sachs LR, Hahnfeldt P (2001) Simple ODE models of tumor growth and anti-angiogenic or radiation treatment. Math Comput Model 33(12–13):1297–1305

    Article  MathSciNet  MATH  Google Scholar 

  28. Schlumberger M, Sherman SI (2009) Clinical trials for progressive differentiated thyroid cancer: patient selection, study design, and recent advances. Thyroid 19(12):1393–1400

    Article  Google Scholar 

  29. Sherratt J, Chaplain M (2001) A new mathematical model for avascular tumour growth. J Math Biol 43(4):291–312

    Article  MathSciNet  MATH  Google Scholar 

  30. Shiraishi F, Tomita T, Iwata M, Berrada AA, Hirayama H (2009) A reliable taylor series-based computational method for the calculation of dynamic sensitivities in large-scale metabolic reaction systems: algorithm and software evaluation. Math Biosci 222:73–85

    Article  MathSciNet  MATH  Google Scholar 

  31. Simeoni M, Magni P, Cammia C, De Nicolao G, Croci V, Pesenti E, Germani M, Poggesi I, Rocchetti M (2004) Predictive pharmacokinetic-pharmacodynamic modeling of tumor growth kinetics in xenograft models after administration of anticancer agents. Cancer Res 64(3): 1094–1101

    Article  Google Scholar 

  32. Sirovich L (1989) Low dimensional description of complicated phenomena. Contemp Math 99:277–305

    Article  MathSciNet  Google Scholar 

  33. Swanson KR, Alvord EC, Murray JD (2002) Quantifying efficacy of chemotherapy of brain tumors with homogeneous and heterogeneous drug delivery. Acta Biotheor 50(4):223–237

    Article  Google Scholar 

  34. Tenoroio L (2001) Statistical regularization of inverse problems. SIAM Rev 43:347–366

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olivier Saut .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer New York

About this chapter

Cite this chapter

Colin, T., Iollo, A., Lombardi, D., Saut, O., Bonichon, F., Palussière, J. (2014). Some Models for the Prediction of Tumor Growth: General Framework and Applications to Metastases in the Lung. In: Garbey, M., Bass, B., Berceli, S., Collet, C., Cerveri, P. (eds) Computational Surgery and Dual Training. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8648-0_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-8648-0_19

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-8647-3

  • Online ISBN: 978-1-4614-8648-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics