Control Issues and Possible Solutions in Robotized Flexible Endoscopy

  • Florent NageotteEmail author
  • Bérengère Bardou
  • Philippe Zanne
  • Laurent Ott
  • Michel de Mathelin


Flexible endoscopic systems are widely used for intraluminal exams and for minimally invasive surgical interventions, but the manual use of these systems is problematic. Providing telemanipulation modes by robotizing flexible endoscopes could be an interesting solution. However, it appears that the accurate control of these systems is not possible through standard control scheme because of large backlash in the cable driving mechanism. In this paper we discuss several possible solutions to this control problem. Especially we show that it is possible to improve accuracy and bandwidth by using an exteroceptive sensor coupled with software backlash compensation. Laboratory results as well as tests on animal models show the possibilities of these approaches.


Flexible endoscopes Robotic control Hysteresis NOTES surgery Natural orifices transluminal endoscopic surgery Telemanipulation Forward position kinematic model Backlash compensation Inverse position kinematic model Exteroceptive sensors MEMS 



This work has been supported by a grant from the French economy state department. Authors also wish to thank Karl Storz and the IRCAD.


  1. 1.
    Abbott DJ, Becke C, Rothstein RI, Peine WJ (2007) Design of an endoluminal notes robotic system. In: IEEE international conference on intelligent robots and systems, San Diego, CA, 29 October–2 November 2007Google Scholar
  2. 2.
    Agrawal V, Peine W, Yao B SeungWook C (2010) Control of cable actuated devices using smooth backlash inverse. In: IEEE international conference on robotics and automation, ICRA 2010, Anchorage, AK, 3–7 May 2010Google Scholar
  3. 3.
    Agrawal V, Peine W, Yao B (2010) Modeling of transmission characteristics across a cable-conduit system. IEEE Trans Robot 26(5):914–924CrossRefGoogle Scholar
  4. 4.
    Bardou B, Nageotte F, Zanne P, de Mathelin M (2009) Design of a telemanipulated system for transluminal surgery, In: Proceedings of IEEE EMBC 2009, Minneapolis, MN, 3–6 September 2009Google Scholar
  5. 5.
    Croom J, Rucker D, Romano J, Webster R (2010) Visual sensing of continuum robot shape using self-organizing maps, In: IEEE international conference on robotics and automation, ICRA 2010, Anchorage, AK, 3–7 May 2010Google Scholar
  6. 6.
    Jacobsen S, Ko H, Iversen E, Davis C (1990) Control strategies for tendon-driven manipulators. IEEE Contr Syst Mag 10(2):23–28CrossRefGoogle Scholar
  7. 7.
    Jones BA, Walker ID (2006) Kinematics for multisection continuum robots. IEEE Trans Robot 22(1):43–55CrossRefGoogle Scholar
  8. 8.
    Marescaux J, Dallemagne B, Perretta S, Wattiez A, Mutter D, Coumaros D (2007) Surgery without scars: report of transluminal cholecystectomy in a human being. Arch Surg 142: 823–826CrossRefGoogle Scholar
  9. 9.
    Ott L, Nageotte F, Zanne P, de Mathelin M (2011) Robotic assistance to flexible endoscopy by physiological-motion tracking. IEEE Trans Robot 27(2):346–359CrossRefGoogle Scholar
  10. 10.
    Song G, Zhao J, Zhou X, De Abreu-Garca JA (2005) Tracking control of a piezoceramic actuator with hysteresis compensation using inverse Preisach model. IEEE/ASME Trans Mechatron 10(2):192–203CrossRefGoogle Scholar

Copyright information

© Springer New York 2014

Authors and Affiliations

  • Florent Nageotte
    • 1
    Email author
  • Bérengère Bardou
    • 2
  • Philippe Zanne
    • 1
  • Laurent Ott
    • 3
  • Michel de Mathelin
    • 1
  1. 1.ICube, University of Strasbourg - CNRSStrasbourgFrance
  2. 2.EndocontrolGrenobleFrance
  3. 3.URECA, University of Lille IIIVilleneuve-d’AscqFrance

Personalised recommendations