Advertisement

Robot Interaction Control in Medicine and Surgery: Original Results and Open Problems

  • B. BayleEmail author
  • M. Joinié-Maurin
  • L. Barbé
  • J. Gangloff
  • M. de Mathelin
Chapter

Abstract

In robot-assisted medical procedures, the control of interactions between tools and tissues has recently raised much interest. In this chapter, we give an original perspective to this subject. In Sect. 11.1, we discuss the pros and cons of force feedback for medical applications. We also highlight some original works and point out open problems that would deserve more interest. Then, in Sects. 11.2 and 11.3, we focus on two of our recent contributions to the field of force feedback teleoperation for medical procedures: the automatic detection of haptic events and the compensation of physiological motions.

Keywords

Medical robot Force feedback Teleoperation Force control  Transcranial magnetic manipulation Force signal processing Haptic device  Fault detection Model estimation Physiological motion Visual servoing 

Notes

Acknowledgments

The authors would like to thank the IRCAD/EITS staff for their help during in vivo experiments. This work has been supported by the Alsace Regional Council and the French National Center for Scientific Research (CNRS).

References

  1. 1.
    Barbé L, Bayle B, Piccin O, Gangloff J, de Mathelin M (2007) Design and evaluation of a linear haptic device. In: IEEE Conference on Robotics and Automation, Roma, Italy, 10–14 April 2007Google Scholar
  2. 2.
    Basseville M, Nikiforov I (1993) Detection of Abrupt Changes: Theory and Application. Prentice Hall, Englewood CliffsGoogle Scholar
  3. 3.
    Bebek O, Cavusoglu MC (2006) Predictive control algorithms using biological signals for active relative motion canceling in robotic assisted heart surgery. In: IEEE International Conference on Robotics and Automation, pp 237–244, Orlando, Florida, 15–19 May 2006Google Scholar
  4. 4.
    Cagneau B, Zemiti N, Bellot D, Morel G (2007) Physiological motion compensation in robotized surgery using force feedback control. In: IEEE International Conference on Robotics and Automation, pp 1881–1886, Roma, Italy, 10–14 April 2007Google Scholar
  5. 5.
    Cortesao R, Poignet P (2009) Motion compensation for robotic-assisted surgery with force feedback. In: IEEE International Conference on Robotics and Automation, pp 3464–3469, Kobe, Japan, 12–17 May 2009Google Scholar
  6. 6.
    Davies B, Jakopec M, Harris SJ, Rodriguez y Baena F, Barrett A, Evangelidis A, Gomes P, Henckel J, Cobb J (2006) Active-constraint robotics for surgery. Proc IEEE 94(9):1696–1704Google Scholar
  7. 7.
    De Vlugt E (2004) Identification of Spinal Reflexes. PhD thesis, Technical University of Delft, NetherlandsGoogle Scholar
  8. 8.
    Dombre E, Duchemin G, Poignet P, Pierrot F (2003) Dermarob: A safe robot for reconstructive surgery. IEEE Trans Robot Autom 19(5):876–884CrossRefGoogle Scholar
  9. 9.
    Dominici M, Poignet P, Dombre E (2008) Compensation of physiological motion using linear predictive force control. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp 1173–1178, Nice, France, 22–26 September 2008Google Scholar
  10. 10.
    Gerovich O, Marayong P, Okamura AM (2004) The effect of visual and haptic feedback on computer-assisted needle insertion. Comput Aided Surg 9(6):243–249CrossRefGoogle Scholar
  11. 11.
    Ginhoux R, Gangloff J, de Mathelin M, Soler L, Sanchez MMA, Marescaux J (2005) Active filtering of physiological motion in robotized surgery using predictive control. IEEE Trans Robot 21(1):67–79CrossRefGoogle Scholar
  12. 12.
    Gustafsson F (2000) Adaptive filtering and change detection. Wiley, New YorkGoogle Scholar
  13. 13.
    Joinié-Maurin M, Bayle B, Barbe L, Gangloff J (2009) Force feedback teleoperation with physiological motion compensation. In: 9th International IFAC Symposium on Robot Control, Gifu, Japan, 9–12 September 2009Google Scholar
  14. 14.
    Joinié-Maurin M, Barbé L, Piccin O, Gangloff J, Bayle B (2010) Design of a linear haptic display based on approximate straight line mechanisms. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp 5048–5053, Taipei, (Taïwan), 18–22 October 2010Google Scholar
  15. 15.
    Joinié-Maurin M, Bayle B, Gangloff J (2011) Force feedback teleoperation with a periodical disturbance compensation. In: Proc. IEEE International Conference on Robotics and Automation, ICRA 2011, Shanghai, China, 9–13 May 2011Google Scholar
  16. 16.
    Kazanzides P, Zuhars J, Mittelstadt B, Taylor RH (1992) Force sensing and control for a surgical robot. In: IEEE International Conference on Robotics and Automation, pp 612–617, Nice, France, May 1992Google Scholar
  17. 17.
    Kuchenbecker KJ, Fiene J, Niemeyer G (2006) Improving contact realism through event-based haptic feedback. IEEE Trans Visual Comput Graph 12(2):117–123CrossRefGoogle Scholar
  18. 18.
    Lebosse C, Renaud P, Bayle B, Mathelin M (2011) Modeling and evaluation of low-cost force sensors. IEEE Trans Robot 27(4):815–822CrossRefGoogle Scholar
  19. 19.
    Nakamura Y, Kishi K, Kawakami H (2011) Heartbeat synchronization for robotic cardiac surgery. In: IEEE International Conference on Robotics and Automation, pp 2014–2019, Seoul, Korea, 21–26 May 2001Google Scholar
  20. 20.
    Ott L, Zanne P, Nageotte F, de Mathelin M, Gangloff J (2008) Physiological motion rejection in flexible endoscopy using visual servoing. In: IEEE International Conference on Robotics and Automation, pages 2928–2933, Pasadena, California, 19–23 May 2008Google Scholar
  21. 21.
    Page ES (1954) Continous inspection schemes. Biometrika 41:100–115MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Richa R, Bó APL, Poignet P (2010) Beating heart motion prediction for robust visual tracking. In: IEEE International Conference on Robotics and Automation, ICRA 2010, pp 4579–4584. IEEE, Anchorage, Alaska, 3–7 May 2010Google Scholar
  23. 23.
    SCAIME (2013) Miniature Force Transducer K-1107. http://www.scaime.com/index_en.html
  24. 24.
    Schweikard A, Glosser G, Bodduluri M, Murphy MJ, Adler JR (2000) Robotic motion compensation for respiratory movement during radiosurgery. Comput Aided Surg 5:263–277CrossRefGoogle Scholar
  25. 25.
    Tholey G, Desai J, Castellanos A (2005) Force feedback plays a significant role in minimally invasive surgery: results and analysis. Ann Surg 241(1):102–109Google Scholar
  26. 26.
    Wagner C, Stylopoulos N, Howe R (2002) Force feedback in surgery: analysis of blunt dissection. In: Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, pp 1316–1321, Orlando, Florida, 24–25 March 2002Google Scholar
  27. 27.
    Wong KH, Dieterich S, Tang J, Cleary K (2007) Quantitative measurement of cyberknife robotic arm steering. Tech Canc Res Treat 6(6):589–594CrossRefGoogle Scholar
  28. 28.
    Yuen SG, Novotny PM, Howe RD (2008) Quasiperiodic predictive filtering for robot-assisted beating heart surgery. In: IEEE International Conference on Robotics and Automation, pp 3875–3880, Pasadena, California, 19–23 May 2008Google Scholar
  29. 29.
    Zivanovic A, Davies B (2000) A robotic system for blood sampling. IEEE Trans Inform Tech Biomed 4(1):8–14CrossRefGoogle Scholar

Copyright information

© Springer New York 2014

Authors and Affiliations

  • B. Bayle
    • 1
    Email author
  • M. Joinié-Maurin
    • 1
  • L. Barbé
    • 1
  • J. Gangloff
    • 1
  • M. de Mathelin
    • 1
  1. 1.University of Strasbourg, iCube Lab-CNRSStrasbourgFrance

Personalised recommendations