Skip to main content

Evolutionary Algorithm-Based Classifier Parameter Tuning for Automatic Ovarian Cancer Tissue Characterization and Classification

  • Chapter
  • First Online:
Ovarian Neoplasm Imaging

Abstract

Purpose: Ovarian cancer is one of the most common gynecological cancers in women. It is difficult to accurately and objectively diagnose benign and malignant ovarian tumors using ultrasound and other tests. Hence, there is an imperative need to develop a computer-aided diagnostic (CAD) system for ovarian tumor classification in order to reduce patient anxiety and cost of unnecessary biopsies. In this paper, we present an automatic CAD system for the detection of benign and malignant ovarian tumors using advanced image processing and data mining techniques.

Materials and Methods: In the proposed system, Hu’s invariant moments, Gabor transform parameters, and entropies are first extracted from the acquired ultrasound images. Significant features are then used to train a probabilistic neural network (PNN) classifier for classifying the images into benign and malignant categories. The model parameter (σ) for which the PNN classifier performs the best is identified using genetic algorithm (GA).

Results: The proposed system was validated using 1,300 benign and 1,300 malignant images obtained from ten patients with benign and ten with malignant disease, respectively. We used 23 statistically significant (p < 0.0001) features. On evaluating the classifier using tenfold cross-validation technique, we were able to achieve an average classification accuracy of 99.8 %, sensitivity of 99.2 %, and specificity of 99.6 % with the σ of 0.264.

Conclusion: The proposed automated system is automated and hence is more objective, can be easily deployed in any computer, fast, accurate, and can act as an adjunct tool in helping the physicians make a confident call on the nature of the ovarian tumor under evaluation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jemal A, Siegel R, Ward E. Cancer statistics, 2010. CA Cancer J Clin. 2010;60:277–300.

    Article  PubMed  Google Scholar 

  2. NIH Consensus Development Panel on Ovarian Cancer. NIH consensus conference. Ovarian cancer. Screening, treatment, and follow-up. JAMA. 1995;273:491–7.

    Article  Google Scholar 

  3. Horner MJ, Ries LAG, Krapcho M, Neyman N, Aminou R, Howlader N, Altekruse SF, Feuer EJ, Huang L, Mariotto A, Miller BA, Lewis DR, Eisner MP, Stinchcomb DG, Edwards BK, editors. SEER cancer statistics review, 1975–2006, National Cancer Institute, Bethesda. SEER Website. seer.cancer.gov/csr/1975_2006. Based on November 2008 SEER data submission. Published 29 May 2009.

  4. Predanic M, Vlahos N, Pennisi JA, Moukhtar M, Alee FA. Color and pulsed Doppler sonography, gray-scale imaging, and serum CA 125 in the assessment of adnexal disease. Obstet Gynecol. 1996;88:283–8.

    Article  CAS  PubMed  Google Scholar 

  5. Wu CC, Lee CN, Chen TM, Lai JI, Hsieh CY, Hwieh FJ. Factors contributing to the accuracy in diagnosing ovarian malignancy by color Doppler ultrasound. Obstet Gynecol. 1994;84:605–8.

    CAS  PubMed  Google Scholar 

  6. Iyer VR, Lee SI. MRI, CT, and PET/CT for ovarian cancer detection and adnexal lesion characterization. AJR Am J Roentgenol. 2010;194:311–21.

    Article  PubMed  Google Scholar 

  7. Sohaib SA, Reznek RH. MR imaging in ovarian cancer. Cancer Imaging. 2007;7 Spec No A:S119–29.

    Article  CAS  PubMed  Google Scholar 

  8. Frangioni JV. New technologies for human cancer imaging. J Clin Oncol. 2008;26:4012–21.

    Article  PubMed  Google Scholar 

  9. Anderiesz C, Quinn MA. Screening for ovarian cancer. Med J Aust. 2003;178:655–6.

    PubMed  Google Scholar 

  10. Jeong YY, Outwater EK, Kang HK. Imaging evaluation of ovarian masses. Radiographics. 2000;20:1445–70.

    Article  CAS  PubMed  Google Scholar 

  11. Pascual MA, Graupera B, Hereter L, Rotili A, Rodriguez I, Alcázar JL. Intra-and interobserver variability of 2D and 3D transvaginal sonography in the diagnosis of benign versus malignant adnexal masses. J Clin Ultrasound. 2011;39:316–21.

    Article  PubMed  Google Scholar 

  12. Guerriero S, Alcazar JL, Pascual MA, Ajossa S, Gerada M, Bargellini R, Virgilio B, Melis GB. Intraobserver and interobserver agreement of greyscale typical ultrasonographic patterns for the diagnosis of ovarian cancer. Ultrasound Med Biol. 2008;34:1711–6.

    Article  PubMed  Google Scholar 

  13. Kim KA, Park CM, Lee JH, Kim HK, Cho SM, Kim B, Seol HY. Benign ovarian tumors with solid and cystic components that mimic malignancy. AJR Am J Roentgenol. 2004;182:1259–65.

    Article  PubMed  Google Scholar 

  14. Acharya UR, Vinitha Sree S, Krishnan MM, Molinari F, Garberoglio R, Suri JS. Non-invasive automated 3D thyroid lesion classification in ultrasound: a class of ThyroScan™ systems. Ultrasonics. 2012;52:508–20.

    Article  PubMed  Google Scholar 

  15. Saba L, Gao H, Acharya UR, Sannia S, Ledda G, Suri JS. Analysis of carotid artery plaque and wall boundaries on CT images by using a semi-automatic method based on level set model. Neuroradiology. 2012;54(11):1207–14. PubMed PMID: 22562690.

    Article  PubMed  Google Scholar 

  16. Renz C, Rajapakse JC, Razvi K, Liang SKC. Ovarian cancer classification with missing data. In: Proceedings of 9th international conference on Neural Information Processing, Singapore, 2002, vol. 2, p. 809–13.

    Google Scholar 

  17. Assareh A, Moradi MH. Extracting efficient fuzzy if-then rules from mass spectra of blood samples to early diagnosis of ovarian cancer. In: IEEE symposium on Computational Intelligence and Bioinformatics and Computational Biology, Honolulu, 2007, p. 502–6.

    Google Scholar 

  18. Tan TZ, Quek C, Ng GS, Razvi K. Ovarian cancer diagnosis with complementary learning fuzzy neural network. Artif Intell Med. 2008;43:207–22.

    Article  PubMed  Google Scholar 

  19. Meng H, Hong W, Song J, Wang L. Feature extraction and analysis of ovarian cancer proteomic mass spectra. In: 2nd international conference on Bioinformatics and Biomedical Engineering, Shanghai, 2008, p. 668–71.

    Google Scholar 

  20. Tang KL, Li TH, Xiong WW, Chen K. Ovarian cancer classification based on dimensionality reduction for SELDI-TOF data. BMC Bioinformatics. 2010;11:109.

    Article  PubMed Central  PubMed  Google Scholar 

  21. Petricoin F. Use of proteomic patterns serum to identify ovarian cancer. The Lancet. 2002;359:572–7.

    Article  CAS  Google Scholar 

  22. Tailor A, Jurkovic D, Bourne TH, Collins WP, Campbell S. Sonographic prediction of malignancy in adnexal masses using an artificial neural network. Br J Obstet Gynaecol. 1999;106:21–30.

    Article  CAS  PubMed  Google Scholar 

  23. Brüning J, Becker R, Entezami M, Loy V, Vonk R, Weitzel H, Tolxdorff T. Knowledge-based system ADNEXPERT to assist the sonographic diagnosis of adnexal tumors. Methods Inf Med. 1997;36:201–6.

    PubMed  Google Scholar 

  24. Biagiotti R, Desii C, Vanzi E, Gacci G. Predicting ovarian malignancy: application of artificial neural networks to transvaginal and color Doppler flow US. Radiology. 1999;210:399–403.

    Article  CAS  PubMed  Google Scholar 

  25. Zimmer Y, Tepper R, Akselrod S. An automatic approach for morphological analysis and malignancy evaluation of ovarian masses using B-scans. Ultrasound Med Biol. 2003;29:1561–70.

    Article  PubMed  Google Scholar 

  26. Lucidarme O, Akakpo JP, Granberg S, Sideri M, Levavi H, Schneider A, Autier P, Nir D, Bleiberg H, Ovarian HistoScanning Clinical Study Group. A new computer-aided diagnostic tool for non-invasive characterisation of malignant ovarian masses: results of a multicentre validation study. Eur Radiol. 2010;20:1822–30.

    Article  PubMed  Google Scholar 

  27. Bellman RE. Dynamic programming. Mineola: Courier Dover Publications; 2003.

    Google Scholar 

  28. Hata T, Yanagihara T, Hayashi K, Yamashiro C, Ohnishi Y, Akiyama M, Manabe A, Miyazaki K. Three-dimensional ultrasonographic evaluation of ovarian tumours: a preliminary study. Hum Reprod. 1999;14:858–61.

    Article  CAS  PubMed  Google Scholar 

  29. Laban M, Metawee H, Elyan A, Kamal M, Kamel M, Mansour G. Three-dimensional ultrasound and three-dimensional power Doppler in the assessment of ovarian tumors. Int J Gynaecol Obstet. 2007;99:201–5.

    Article  CAS  PubMed  Google Scholar 

  30. Cohen LS, Escobar PF, Scharm C, Glimco B, Fishman DA. Three-dimensional power Doppler ultrasound improves the diagnostic accuracy for ovarian cancer prediction. Gynecol Oncol. 2001;82:40–8.

    Article  CAS  PubMed  Google Scholar 

  31. Hu M. Visual pattern recognition by moment invariants. IRE Trans Info Theory. 1962;8:179–87.

    Google Scholar 

  32. Shen L, Bai L. A review of Gabor wavelets for face recognition. Patt Anal Appl. 2006;9:273–92.

    Article  Google Scholar 

  33. Manjunath BS, Ma WY. Texture features for browsing and retrieval of image data. IEEE Trans Pattern Anal Mach Intell. 1996;18:837–42.

    Article  Google Scholar 

  34. Pharwaha APS, Singh B. Shannon and non-shannon measures of entropy for statistical texture feature extraction in digitized mammograms. Proceedings of the World Congress on Engineering and Computer Science (WCECS). San Francisco, USA. 2009, Vol 2. p. 2179.

    Google Scholar 

  35. Box JF. Guinness, gosset, fisher, and small samples. Statist Sci. 1987;2:45–52.

    Article  Google Scholar 

  36. Specht DF. Probabilistic neural networks. Neural Networks. 1990;3:109–18.

    Article  Google Scholar 

  37. Raghu PP, Yegnanarayana B. Supervised texture classification using a probabilistic neural network and constraint satisfaction model. IEEE Trans Neural Netw. 1998;9:516–22.

    Article  CAS  PubMed  Google Scholar 

  38. Ng EYK, Acharya UR, Keith LG, Lockwood S. Detection and differentiation of breast cancer using neural classifiers with first warning thermal sensors. Inform Sciences. 2007;177:4526–38.

    Article  Google Scholar 

  39. Goldberg DE. Genetic algorithms in search, optimization, and machine learning. Reading: Addison Wesley Professional Publishers, Boston, MA, USA. 1989.

    Google Scholar 

  40. Deb K. Multi-objective optimization using evolutionary algorithms. Chichester/New York: Wiley; 2009.

    Google Scholar 

  41. Bast Jr RC, Badgwell D, Lu Z, Marquez R, Rosen D, Liu J, Baggerly KA, Atkinson EN, Skates S, Zhang Z, Lokshin A, Menon U, Jacobs I, Lu K. New tumor markers: CA125 and beyond. Int J Gynecol Cancer. 2005;15:274–81.

    Article  PubMed  Google Scholar 

  42. Zaidi SI. Fifty years of progress in gynecologic ultrasound. Int J Gynaecol Obstet. 2007;99:195–7.

    Article  PubMed  Google Scholar 

  43. Menon U, Talaat A, Rosenthal AN, Macdonald ND, Jeyerajah AR, Skates SJ, Sibley K, Oram DH, Jacobs IJ. Performance of ultrasound as a second line test to serum CA125 in ovarian cancer screening. BJOG. 2000;107:165–9.

    Article  CAS  PubMed  Google Scholar 

  44. Acharya UR, Sree SV, Krishnan MRM, Saba L, Molinari F, Guerriero S, Suri JS. Ovarian tumor characterization using 3D ultrasound. Technol Cancer Res Treat. 2012;11(6):543–52.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Vinitha Sree PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Acharya, U.R. et al. (2013). Evolutionary Algorithm-Based Classifier Parameter Tuning for Automatic Ovarian Cancer Tissue Characterization and Classification. In: Saba, L., Acharya, U., Guerriero, S., Suri, J. (eds) Ovarian Neoplasm Imaging. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-8633-6_27

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-8633-6_27

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4614-8632-9

  • Online ISBN: 978-1-4614-8633-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics