Skip to main content

Novel Findings in Bone Biology: Impact on Bone Health for Women

  • Chapter
  • First Online:
Integrative Biology of Women’s Health

Abstract

The maintenance of bone integrity throughout life is critical for minimizing the risk of debilitating fractures, which most frequently occur in those with low bone mass (osteopenia) and frank osteoporosis. Bone dynamically adapts to mechanical stresses placed on it, as with increased exercise, but this adaptation may be modified by changes in circulating estrogen, altered oxidative status, and nutritional factors. This review addresses novel findings of the last decade as they affect bone health in women. Specific topics discussed include the negative impact of low energy availability due to prolonged caloric restriction, the surprising role of estrogen receptor-alpha in bone mechanotransduction, and how oxidative stress may be an important mechanism contributing to bone loss with aging and estrogen insufficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Harvey N, Dennison E, Cooper C (2008) Epidemiology of osteoporosis. In: Rosen CJ (ed) Primer on the metabolic bone diseases and disorders of mineral metabolism, 7th edn. Amer. Society for Bone and Mineral Research, Washington, DC, pp 198–202

    Google Scholar 

  2. Cooper C, Atkinson EJ, Jacobsen SJ, O’Fallon WM, Melton LJ 3rd (1993) Population-based study of survival after osteoporotic fractures. Am J Epidemiol 137(9):1001–1005

    PubMed  CAS  Google Scholar 

  3. Drake MT, Khosla S (2008) Role of sex steroids in the pathogenesis of osteoporosis. In: Rosen CJ (ed) Primer on the metabolic bone diseases and disorders of mineral metabolism, 7th edn. Amer. Society for Bone and Mineral Research, Washington, DC, pp 208–213

    Chapter  Google Scholar 

  4. Yaemsiri S, Slining MM, Agarwal SK (2011) Perceived weight status, overweight diagnosis, and weight control among US adults: the NHANES 2003–2008 study. Int J Obes (Lond) 35(8):1063–1070

    Article  CAS  Google Scholar 

  5. Shapses SA, Sukumar D (2012) Bone metabolism in obesity and weight loss. Annu Rev Nutr 32:287–309

    Article  PubMed  CAS  Google Scholar 

  6. Langlois JA, Mussolino ME, Visser M, Looker AC, Harris T, Madans J (2001) Weight loss from maximum body weight among middle-aged and older white women and the risk of hip fracture: the NHANES I epidemiologic follow-up study. Osteoporos Int 12(9):763–768

    Article  PubMed  CAS  Google Scholar 

  7. Mussolino ME, Looker AC, Madans JH, Langlois JA, Orwoll ES (1998) Risk factors for hip fracture in white men: the NHANES I epidemiologic follow-up study. J Bone Miner Res 13(6):918–924

    Article  PubMed  CAS  Google Scholar 

  8. Hinton PS, LeCheminant JD, Smith BK, Rector RS, Donnelly JE (2009) Weight loss-induced alterations in serum markers of bone turnover persist during weight maintenance in obese men and women. J Am Coll Nutr 28(5):565–573

    Article  PubMed  CAS  Google Scholar 

  9. Villalon KL, Gozansky WS, Van Pelt RE et al (2011) A losing battle: weight regain does not restore weight loss-induced bone loss in postmenopausal women. Obesity (Silver Spring) 19(12):2345–2350

    Article  CAS  Google Scholar 

  10. Fogelholm GM, Slevänen HT, Kukkonen-Harjula TK, Pasanen ME (2001) Bone mineral density during reduction, maintenance and regain of body weight in premenopausal, obese women. Osteoporos Int 12(3):199–206

    Article  PubMed  CAS  Google Scholar 

  11. Zhao LJ, Jiang H, Papasian CH et al (2008) Correlation of obesity and osteoporosis: effect of fat mass on the determination of osteoporosis. J Bone Miner Res 23(1):17–29

    Article  PubMed  CAS  Google Scholar 

  12. Institute of Medicine (IOM) (1998) Assessing readiness in military women: the relationship of body composition, nutrition and health. In: Marriott BM (ed) Committee on military nutrition research, food and nutrition board. National Academy Press, Washington, DC

    Google Scholar 

  13. Friedl KE, Moore RJ, Hoyt RW, Marchitelli LJ, Martinez-Lopez LE, Askew EW (2000) Endocrine markers of semistarvation in healthy lean men in a multistressor environment. J Appl Physiol 88(5):1820–1830

    PubMed  CAS  Google Scholar 

  14. Vestergaard P, Emborg C, Stoving RK, Hagen C, Mosekilde L, Brixen K (2002) Fractures in patients with anorexia nervosa, bulimia nervosa, and other eating disorders: a nationwide register study. Int J Eat Disord 32(3):301–308

    Article  PubMed  Google Scholar 

  15. Fried LP, Tangen CM, Waltson J et al (2001) Frailty in older adults: evidence for a phenotype. J Gerontol A Biol Sci Med Sci 56(3):M146–M157

    Article  PubMed  CAS  Google Scholar 

  16. Drinkwater BL, Nilson K, Chesnut CH 3rd, Bremner WJ, Shainholtz S, Southworth MB (1984) Bone mineral content of amenorrheic and eumenorrheic athletes. N Engl J Med 311(5):277–281

    Article  PubMed  CAS  Google Scholar 

  17. Ackerman KE, Nazem T, Chapko D et al (2011) Bone microarchitecture is impaired in adolescent amenorrheic athletes compared with eumenorrheic athletes and nonathletic controls. J Clin Endocrinol Metab 96(10):3123–3133

    Article  PubMed  CAS  Google Scholar 

  18. Sukumar D, Ambia-Sobhan H, Zurfluh R et al (2011) Areal and volumetric bone mineral density and geometry at two levels of protein intake during caloric restriction: a randomized, controlled trial. J Bone Miner Res 26(6):1339–1348

    Article  PubMed  CAS  Google Scholar 

  19. Villareal DT, Kotyk JJ, Armamento-Villareal RC et al (2011) Reduced bone mineral density is not associated with significantly reduced bone quality in men and women practicing long-term caloric restrictions with adequate nutrition. Aging Cell 10(1):96–102

    Article  PubMed  CAS  Google Scholar 

  20. Baek K, Barlow AA, Allen MR, Bloomfield SA (2008) Food restriction and simulated microgravity: effects on bone and serum leptin. J Appl Physiol 104(4):1086–1093

    Article  PubMed  CAS  Google Scholar 

  21. Swift SN, Baek K, De Souza MJ, Bloomfield SA (2008) Treadmill exercise provides only short-term protection against cancellous bone loss with reduced dietary energy intake: endocrine mechanisms. J Bone Miner Res 23(suppl 1):M138

    Google Scholar 

  22. Hamrick M, Ding K, Ponnala S, Ferrari S, Isales C (2008) Caloric restriction decreases cortical bone mass but spares trabecular bone in the mouse skeleton: implications for the regulation of bone mass by body weight. J Bone Miner Res 23(6):870–878

    Article  PubMed  CAS  Google Scholar 

  23. Myburgh KH, Hutchins J, Fataar AB, Hough SF, Noakes TD (1990) Low bone density is an etiologic factor for stress fractures in athletes. Ann Intern Med 113(10):754–759

    Article  PubMed  CAS  Google Scholar 

  24. Lauder TD, Dixit S, Pezzin LE, Williams MV, Campbell CS, Davis GD (2000) The relation between stress fractures and bone mineral density: evidence from active-duty army women. Arch Phys Med Rehabil 81(1):73–79

    PubMed  CAS  Google Scholar 

  25. De Souza M, West S, Jamal S, Hawker G, Gundal C, Williams N (2008) The presence of both an energy deficiency and estrogen deficiency exacerbate alterations of bone metabolism in exercising women. Bone 43(1):140–148

    Article  PubMed  Google Scholar 

  26. Ihle R, Loucks A (2004) Dose–response relationships between energy availability and bone turnover in young exercising women. J Bone Miner Res 19(8):1231–1240

    Article  PubMed  Google Scholar 

  27. De Souza MJ, Williams NI (2004) Physiological aspects and clinical sequelae of energy deficiency and hypoestrogenism in exercising women. Hum Reprod Update 10(5):433–448

    Article  PubMed  Google Scholar 

  28. Nattiv A, Loucks AB, Manore MM, Sanborn CF, Sundgot-Borgen J, Warren MP, American College of Sports Medicine (2007) American College of Sports Medicine position stand. The female athlete triad. Med Sci Sports Exerc 39(10):1867–1882

    Article  PubMed  Google Scholar 

  29. Cifuentes M, Advis JP, Shapses SA (2004) Estrogen prevents the reduction in fractional calcium absorption due to energy restriction in mature rats. J Nutr 134(8):1929–1934

    PubMed  CAS  Google Scholar 

  30. Delvin M, Cloutier A, Thomas N et al (2010) Caloric restriction leads to high marrow adiposity and low bone mass in growing mice. J Bone Miner Res 25(9):2078–2088

    Article  Google Scholar 

  31. Baek K, Bloomfield SA (2012) Blocking β-adrenergic signaling attenuates reductions in circulating leptin, cancellous bone mass, and marrow adiposity seen with dietary energy restriction. J Appl Physiol 113:1792–1801. doi:10.1152/japplphysiol.00187.2012 (online publication preceding print)

    Article  PubMed  CAS  Google Scholar 

  32. Donnelly JE, Blair SN, Jakicic JM et al (2009) American College of Sports Medicine position stand. Appropriate physical activity intervention strategies for weight loss and prevention of weight regain for adults. Med Sci Sports Exerc 41(2):459–471

    Article  PubMed  Google Scholar 

  33. Wolman RL, Clark P, McNally E, Harries M, Reeve J (1990) Menstrual state and exercise as determinants of spinal trabecular bone density in female athletes. Brit Med J 301(6751):516–518

    Article  PubMed  CAS  Google Scholar 

  34. Villareal DT, Fontana L, Weiss EP et al (2006) Bone mineral density response to caloric restriction-induced weight loss or exercise-induced weight loss: a randomized controlled trial. Arch Intern Med 166(22):2502–2510

    Article  PubMed  Google Scholar 

  35. Armamento-Villareal R, Sadler C, Napoli N et al (2012) Weight loss in obese older adults increases serum sclerostin and impairs hip geometry but both are prevented by exercise training. J Bone Miner Res 27(5):1215–1221

    Article  PubMed  CAS  Google Scholar 

  36. Silverman NE, Nicklas BJ, Ryan AS (2009) Addition of aerobic exercise to a weight loss program increases BMD, with an associated reduction in inflammation in overweight postmenopausal women. Calcif Tissue Int 84(4):257–265

    Article  PubMed  CAS  Google Scholar 

  37. Swift SN, Greene ES, De Souza MJ, Bloomfield SA (2009) Thresholds for bone loss with energy restriction change with exercise status. FASEB J 23:720.9

    Google Scholar 

  38. Ehrlich PJ, Lanyon LE (2002) Mechanical strain and bone function: a review. Osteoporos Int 13(9):688–700

    Article  PubMed  CAS  Google Scholar 

  39. Lee K, Lanyon LE (2004) Mechanical loading influences bone mass through estrogen receptor α. Exerc Sport Sci Rev 32(2):64–68

    Article  PubMed  Google Scholar 

  40. Hoyland JA, Baris C, Wood L et al (1999) Effect of ovarian steroid deficiency on oestrogen receptor α expression in bone. J Pathol 188(3):294–303

    Article  PubMed  CAS  Google Scholar 

  41. Lim SK, Won YJ, Lee HC, Huh KB, Park YS (1999) A PCR analysis of ERα and ERβ mRNA abundance in rats and the effect of ovariectomy. J Bone Miner Res 14(7):1189–1196

    Article  PubMed  CAS  Google Scholar 

  42. Damien E, Price JS, Lanyon LE (1998) The estrogen receptor’s involvement in osteoblasts’ adaptive response to mechanical strain. J Bone Miner Res 13(8):1275–1282

    Article  PubMed  CAS  Google Scholar 

  43. Lee K, Jessop H, Suswillo R, Zaman G, Lanyon L (2003) Bone adaptation requires oestrogen receptor-α. Nature 424(6947):389

    Article  PubMed  CAS  Google Scholar 

  44. Lee K, Jessop H, Suswillo R, Zaman G, Lanyon L (2004) The adaptive response of bone to mechanical loading in female transgenic mice is deficient in the absence of oestrogen receptor α and β. J Endocrinol 182(2):193–201

    Article  PubMed  CAS  Google Scholar 

  45. Saxon L, Galea G, Meakin L, Price J, Lanyon LE (2012) Estrogen receptors α and β have different gender-dependent effects on adaptive responses to load-bearing in cancellous and cortical bone. Endocrinology 153(5):2254–2266

    Article  PubMed  CAS  Google Scholar 

  46. Swift SN, Swift JM, Greene ES, Bloomfield SA (2010) Mechanical loading increases estrogen receptor alpha expression in osteocytes and osteoblasts despite chronic energy restriction. J Bone Miner Res 25 (suppl 1). http://www.asbmr.org/Meetings/AnnualMeeting/Abstracts10.aspx. Accessed 11 March 2012

  47. Harmon D (1956) Aging: a theory based on free radical and radiation chemistry. J Gerontol 11(3):298–300

    Article  Google Scholar 

  48. Manolagas SC (2010) From estrogen-centric to aging and oxidative stress: a revised perspective of the pathogenesis of osteoporosis. Endocr Rev 31(3):266–300

    Article  PubMed  CAS  Google Scholar 

  49. Garrett IR, Boyce BF, Oreffo RO, Bonewald L, Poser J, Mundy GR (1990) Oxygen-derived free radicals stimulate osteoclastic bone resorption in rodent bone in vitro and in vivo. J Clin Invest 85(3):632–639

    Article  PubMed  CAS  Google Scholar 

  50. Altindag O, Erel O, Soran N, Celik H, Selek S (2008) Total oxidative/anti-oxidative status and relation to bone mineral density in osteoporosis. Rheumatol Int 28(4):317–321

    Article  PubMed  CAS  Google Scholar 

  51. Niki E, Nakano M (1990) Estrogens as antioxidants. Methods Enzymol 186:330–333

    Article  PubMed  CAS  Google Scholar 

  52. Lean J, Davies J, Fuller K et al (2003) A crucial role for thiol antioxidants in estrogen-deficiency bone loss. J Clin Invest 112(6):915–923

    PubMed  CAS  Google Scholar 

  53. Manolagas S, Almeida M (2007) Gone with the Wnts: β-catenin, T-cell factor, forkhead box O, and oxidative stress in age-dependent diseases of bone, lipid, and glucose metabolism. Mol Endocrinol 21(11):2605–2614

    Article  PubMed  CAS  Google Scholar 

  54. Almeida M, Han L, Ambrogini E, Bartell S, Manolagas S (2010) Oxidative stress stimulates apoptosis and activates NF-κB in osteoblastic cells via a PKCβ/p66shc signaling cascade: counter regulation by estrogens or androgens. Mol Endocrinol 24(10):2030–2037

    Article  PubMed  CAS  Google Scholar 

  55. Rached M, Kode A, Xu L et al (2010) FoxO1 is a positive regulator of bone formation by favoring protein synthesis and resistance to oxidative stress in osteoblasts. Cell Metab 11(2):147–160

    Article  PubMed  CAS  Google Scholar 

  56. Ambrogini E, Almeida M, Martin-Millian M et al (2010) FoxO-mediated defense against oxidative stress in osteoblasts is indispensible for skeletal homeostasis in mice. Cell Metab 11(2):136–146

    Article  PubMed  CAS  Google Scholar 

  57. Muthusami S, Ramachandran I, Muthusamy B et al (2005) Ovariectomy induces oxidative stress and impairs bone antioxidant system in adult rats. Clin Chim Acta 360(1–2):81–86

    Article  PubMed  CAS  Google Scholar 

  58. Almeida M, Han L, Martin-Millan M et al (2007) Skeletal involution by age-associated oxidative stress and its acceleration by loss of sex steroids. J Biol Chem 282(37):27285–27297

    Article  PubMed  CAS  Google Scholar 

  59. Mann V, Huber C, Kogianni G, Collins F, Noble B (2007) The antioxidant effect of estrogen and selective estrogen receptor modulators in the inhibition of osteocyte apoptosis in vitro. Bone 40(3):674–684

    Article  PubMed  CAS  Google Scholar 

  60. Grassi F, Tell G, Robbie-Ryan M et al (2007) Oxidative stress causes bone loss in estrogen-deficient mice through enhanced bone marrow dendritic cell activation. Proc Natl Acad Sci U S A 104(38):15087–15092

    Article  PubMed  CAS  Google Scholar 

  61. Rao LG, Mackinnon ES, Josse RG et al (2007) Lycopene consumption decreases oxidative stress and bone resorption markers in postmenopausal women. Osteoporos Int 18(1):109–115

    Article  PubMed  CAS  Google Scholar 

  62. Weaver CM, Alekel DL, We W, Ronis MJ (2012) Flavonoid intake and bone health. J Nutr Gerontol Geriatr 31(3):239–253

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susan A. Bloomfield Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bloomfield, S.A., Metzger, C.E. (2013). Novel Findings in Bone Biology: Impact on Bone Health for Women. In: Spangenburg, E. (eds) Integrative Biology of Women’s Health. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8630-5_2

Download citation

Publish with us

Policies and ethics