Skip to main content

Influence of Ovarian Hormones on Skeletal Muscle Contractility

  • Chapter
  • First Online:
Integrative Biology of Women’s Health

Abstract

There is a loss of skeletal muscle strength around the time of menopause in women, probably due to the decline of ovarian hormone production. The maintenance of muscle strength and contractility with age and with loss of ovarian hormones are critical issues because the risk for disability and dependent living increases with muscle weakness. There is substantial evidence that estradiol is beneficial to muscle strength. Thus, better understanding of the mechanisms by which estradiol affects contractility and how the loss of this hormone is detrimental to skeletal muscle function is critical. This chapter focuses on ovarian hormones, specifically how the lack of estradiol affects skeletal muscle contractility in both postmenopausal women and rodent models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Armstrong AL, Oborne J et al (1996) Effects of hormone replacement therapy on muscle performance and balance in post-menopausal women. Clin Sci (Lond) 91(6):685–690

    CAS  Google Scholar 

  2. Asmussen E (1980) Aging and exercise. In: Horvath S (ed) Environmental physiology. Elsevier North Holland Inc, New York, pp 419–428

    Google Scholar 

  3. Asmussen E, Heebollnielsen K (1962) Isometric muscle strength in relation to Age in Men and women. Ergonomics 5(1–4):167–169

    Article  Google Scholar 

  4. Bassey EJ, Mockett SP et al (1996) Lack of variation in muscle strength with menstrual status in healthy women aged 45–54 years: data from a national survey. Eur J Appl Physiol Occup Physiol 73(3–4):382–386

    Article  PubMed  CAS  Google Scholar 

  5. Carville SF, Rutherford OM et al (2006) Power output, isometric strength and steadiness in the leg muscles of pre- and postmenopausal women; the effects of hormone replacement therapy. Eur J Appl Physiol 96(3):292–298

    Article  PubMed  CAS  Google Scholar 

  6. Dieli-Conwright CM, Spektor TM et al (2009) Influence of hormone replacement therapy on eccentric exercise induced myogenic gene expression in postmenopausal women. J Appl Physiol 107(5):1381–1388

    Article  PubMed  CAS  Google Scholar 

  7. Eason JM, Schwartz GA et al (2000) Sexually dimorphic expression of myosin heavy chains in the adult mouse masseter. J Appl Physiol 89(1):251–258

    PubMed  CAS  Google Scholar 

  8. Finni T, Noorkoiv M et al (2011) Muscle function in monozygotic female twin pairs discordant for hormone replacement therapy. Muscle Nerve 44(5):769–775

    Article  PubMed  CAS  Google Scholar 

  9. Fisher JS, Hasser EM et al (1998) Effects of ovariectomy and hindlimb unloading on skeletal muscle. J Appl Physiol 85(4):1316–1321

    PubMed  CAS  Google Scholar 

  10. Fonseca H, Powers SK et al (2012) Physical inactivity is a major contributor to ovariectomy-induced sarcopenia. Int J Sports Med 33(4):268–278

    Article  PubMed  CAS  Google Scholar 

  11. Greeves JP, Cable NT et al (1999) Changes in muscle strength in women following the menopause: a longitudinal assessment of the efficacy of hormone replacement therapy. Clin Sci (Lond) 97(1):79–84

    Article  CAS  Google Scholar 

  12. Greising SM, Baltgalvis KA et al (2009) Hormone therapy and skeletal muscle strength: a meta-analysis. J Gerontol A Biol Sci Med Sci 64(10):1071–1081

    Article  PubMed  Google Scholar 

  13. Greising SM, Baltgalvis KA et al (2011a) Estradiol's beneficial effect on murine muscle function is independent of muscle activity. J Appl Physiol 110(1):109–115

    Article  PubMed  CAS  Google Scholar 

  14. Greising SM, Carey RS et al (2011b) Estradiol treatment, physical activity, and muscle function in ovarian-senescent mice. Exp Gerontol 46(8):685–693

    PubMed  CAS  Google Scholar 

  15. Heikkinen J, Kyllonen E et al (1997) HRT and exercise: effects on bone density, muscle strength and lipid metabolism. A placebo controlled 2-year prospective trial on two estrogen-progestin regimens in healthy postmenopausal women. Maturitas 26(2):139–149

    Article  PubMed  CAS  Google Scholar 

  16. Hubal MJ, Ingalls CP et al (2005) Effects of eccentric exercise training on cortical bone and muscle strength in the estrogen-deficient mouse. J Appl Physiol 98(5):1674–1681

    Article  PubMed  CAS  Google Scholar 

  17. Kadi F, Karlsson C et al (2002) The effects of physical activity and estrogen treatment on rat fast and slow skeletal muscles following ovariectomy. J Muscle Res Cell Motil 23(4):335–339

    Article  PubMed  CAS  Google Scholar 

  18. Kallman DA, Plato CC et al (1990) The role of muscle loss in the age-related decline of grip strength: cross-sectional and longitudinal perspectives. J Gerontol 45(3):M82–M88

    Article  PubMed  CAS  Google Scholar 

  19. Kobori M, Yamamuro T (1989) Effects of gonadectomy and estrogen administration on rat skeletal muscle. Clin Orthop 243:306–311

    PubMed  Google Scholar 

  20. Lee CE, McArdle A et al (2007) The role of hormones, cytokines and heat shock proteins during age-related muscle loss. Clin Nutr 26(5):524–534

    Article  PubMed  CAS  Google Scholar 

  21. Lemoine S, Granier P et al (2003) Estrogen receptor alpha mRNA in human skeletal muscles. Med Sci Sports Exerc 35(3):439–443

    Article  PubMed  CAS  Google Scholar 

  22. Liu YH, Jia SS et al (2009) Effects of ovariectomy on rat genioglossal muscle contractile properties and fiber-type distribution. Angle Orthod 79(3):509–514

    PubMed  Google Scholar 

  23. Maddalozzo GF, Cardinal BJ et al (2004) The association between hormone therapy use and changes in strength and body composition in early postmenopausal women. Menopause 11(4):438–446

    Article  PubMed  Google Scholar 

  24. Maltin CA, Delday MI et al (1989) Fiber-type composition of nine rat muscles. I. Changes during the first year of life. Am J Physiol 257(6 Pt 1):E823–E827

    PubMed  CAS  Google Scholar 

  25. McClung JM, Davis JM et al (2006) Estrogen status and skeletal muscle recovery from disuse atrophy. J Appl Physiol 100(6):2012–2023

    Article  PubMed  CAS  Google Scholar 

  26. McCormick KM, Burns KL et al (2004) Effects of ovariectomy and estrogen on skeletal muscle function in growing rats. J Muscle Res Cell Motil 25:21–27

    Article  PubMed  CAS  Google Scholar 

  27. Meeuwsen IB, Samson MM et al (2000) Evaluation of the applicability of HRT as a preservative of muscle strength in women. Maturitas 36(1):49–61

    Article  PubMed  CAS  Google Scholar 

  28. Messier V, Rabasa-Lhoret R et al (2011) Menopause and sarcopenia: A potential role for sex hormones. Maturitas 68(4):331–336

    Article  PubMed  CAS  Google Scholar 

  29. Moran AL, Warren GL et al (2006) Removal of ovarian hormones from mature mice detrimentally affects muscle contractile function and myosin structural distribution. J Appl Physiol 100(2):548–559

    Article  PubMed  CAS  Google Scholar 

  30. Moran AL, Nelson SA et al (2007) Estradiol replacement reverses ovariectomy-induced muscle contractile and myosin dysfunction in mature female mice. J Appl Physiol 102(4):1387–1393

    Article  PubMed  CAS  Google Scholar 

  31. Narici MV, Bordini M et al (1991) Effect of aging on human adductor pollicis muscle function. J Appl Physiol 71(4):1277–1281

    PubMed  CAS  Google Scholar 

  32. Nelson JF, Felicio LS et al (1982) A longitudinal study of estrous cyclicity in aging C57BL/6J mice: I. Cycle frequency, length and vaginal cytology. Biol Reprod 27(2):327–339

    Article  PubMed  CAS  Google Scholar 

  33. Onambele GN, Bruce SA et al (2006) Oestrogen status in relation to the early training responses in human thumb adductor muscles. Acta Physiol (Oxf) 188(1):41–52

    Article  CAS  Google Scholar 

  34. Pette D, Staron RS (1990) Cellular and molecular diversities of mammalian skeletal muscle fibers. Rev Physiol Biochem Pharmacol 116:1–76

    PubMed  CAS  Google Scholar 

  35. Phillips SK, Rook KM et al (1993) Muscle weakness in women occurs at an earlier age than in men, but strength is preserved by hormone replacement therapy. Clin Sci (Lond) 84(1):95–98

    CAS  Google Scholar 

  36. Piccone CM, Brazeau GA et al (2005) Effect of oestrogen on myofibre size and myosin expression in growing rats. Exp Physiol 90(1):87–93

    Article  PubMed  CAS  Google Scholar 

  37. Pollanen E, Sipila S et al (2011) Differential influence of peripheral and systemic sex steroids on skeletal muscle quality in pre- and postmenopausal women. Aging Cell 10(4):650–660

    Article  PubMed  CAS  Google Scholar 

  38. Ribom EL, Piehl-Aulin K et al (2002) Six months of hormone replacement therapy does not influence muscle strength in postmenopausal women. Maturitas 42(3):225–231

    Article  PubMed  CAS  Google Scholar 

  39. Rogers NH, Perfield JW 2nd et al (2010) Loss of ovarian function in mice results in abrogated skeletal muscle PPARdelta and FoxO1-mediated gene expression. Biochem Biophys Res Commun 392(1):1–3

    Article  PubMed  CAS  Google Scholar 

  40. Ronkainen PH, Kovanen V et al (2009) Postmenopausal hormone replacement therapy modifies skeletal muscle composition and function: a study with monozygotic twin pairs. J Appl Physiol 107(1):25–33

    Article  PubMed  CAS  Google Scholar 

  41. Samson MM, Meeuwsen IB et al (2000) Relationships between physical performance measures, age, height and body weight in healthy adults. Age Ageing 29(3):235–242

    Article  PubMed  CAS  Google Scholar 

  42. Schneider BS, Fine JP et al (2004) The effects of estradiol and progesterone on plantarflexor muscle fatigue in ovariectomized mice. Biol Res Nurs 5(4):265–275

    Article  PubMed  Google Scholar 

  43. Schoenberg M, Wells JB (1984) Stiffness, force, and sarcomere shortening during a twitch in frog semitendinosus muscle bundles. Biophys J 45(2):389–397

    Article  PubMed  CAS  Google Scholar 

  44. Sipila S, Poutamo J (2003) Muscle performance, sex hormones and training in peri-menopausal and post-menopausal women. Scand J Med Sci Sports 13(1):19–25

    Article  PubMed  CAS  Google Scholar 

  45. Sipila S, Taaffe DR et al (2001) Effects of hormone replacement therapy and high-impact physical exercise on skeletal muscle in post-menopausal women: a randomized placebo-controlled study. Clin Sci (Lond) 101(2):147–157

    Article  CAS  Google Scholar 

  46. Sitnick M, Foley AM et al (2006) Ovariectomy prevents the recovery of atrophied gastrocnemius skeletal muscle mass. J Appl Physiol 100(1):286–293

    Article  PubMed  CAS  Google Scholar 

  47. Skelton DA, Phillips SK et al (1999) Hormone replacement therapy increases isometric muscle strength of adductor pollicis in post-menopausal women. Clin Sci (Lond) 96(4):357–364

    Article  CAS  Google Scholar 

  48. Suzuki S, Yamamuro T (1985) Long-term effects of estrogen on rat skeletal muscle. Exp Neurol 87(2):291–299

    Article  PubMed  CAS  Google Scholar 

  49. Taaffe DR, Sipila S et al (2005) The effect of hormone replacement therapy and/or exercise on skeletal muscle attenuation in postmenopausal women: a yearlong intervention. Clin Physiol Funct Imaging 25(5):297–304

    Article  PubMed  CAS  Google Scholar 

  50. Taylor JA, Kandarian SC (1994) Advantage of normalizing force production to myofibrillar protein in skeletal muscle cross-sectional area. J Appl Physiol 76(2):974–978

    Article  PubMed  CAS  Google Scholar 

  51. Velders M, Solzbacher M et al (2010) Estradiol and genistein antagonize the ovariectomy effects on skeletal muscle myosin heavy chain expression via ER-beta mediated pathways. J Steroid Biochem Mol Biol 120(1):53–59

    Article  PubMed  CAS  Google Scholar 

  52. Warren GL, Lowe DA et al (1996) Estradiol effect on anterior crural muscles-tibial bone relationship and susceptibility to injury. J Appl Physiol 80(5):1660–1665

    PubMed  CAS  Google Scholar 

  53. Wattanapermpool J, Reiser PJ (1999) Differential effects of ovariectomy on calcium activation of cardiac and soleus myofilaments. Am J Physiol 277(2 Pt 2):H467–H473

    PubMed  CAS  Google Scholar 

  54. Widrick JJ, Maddalozzo GF et al (2003) Morphological and functional characteristics of skeletal muscle fibers from hormone-replaced and nonreplaced postmenopausal women. J Gerontol A Biol Sci Med Sci 58(1):3–10

    Article  PubMed  Google Scholar 

  55. Wiik A, Glenmark B et al (2003) Oestrogen receptor beta is expressed in adult human skeletal muscle both at the mRNA and protein level. Acta Physiol Scand 179(4):381–387

    Article  PubMed  CAS  Google Scholar 

  56. Wiik A, Ekman M et al (2009) Expression of both oestrogen receptor alpha and beta in human skeletal muscle tissue. Histochem Cell Biol 131(2):181–189

    Article  PubMed  CAS  Google Scholar 

  57. Wohlers LM, Sweeney SM et al (2009) Changes in contraction-induced phosphorylation of AMP-activated protein kinase and mitogen-activated protein kinases in skeletal muscle after ovariectomy. J Cell Biochem 107(1):171–178

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dawn A. Lowe Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lowe, D.A., Greising, S.M. (2013). Influence of Ovarian Hormones on Skeletal Muscle Contractility. In: Spangenburg, E. (eds) Integrative Biology of Women’s Health. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8630-5_1

Download citation

Publish with us

Policies and ethics