Skip to main content

Histone Methylation in Chromatin Signaling

  • Chapter
  • First Online:

Abstract

In this chapter we first provide a broad overview of some of the major discoveries that form the foundation of the histone methylation field. We then describe the main components involved in histone methylation signaling: the enzymes (“writers” and “erases”), the substrates, and the “readers,” and how together these components integrate to regulate critical nuclear and epigenetic programs. We also discuss how histone methylation is coordinated with DNA methylation, an important regulator of epigenetics. Finally, we describe some well-defined clinically important cases of histone methylation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aasland R, Gibson TJ, Stewart AF (1995) The PHD finger: implications for chromatin-mediated transcriptional regulation. Trends Biochem Sci 20(2):56–59

    PubMed  CAS  Google Scholar 

  • Agger K et al (2007) UTX and JMJD3 are histone H3K27 demethylases involved in HOX gene regulation and development. Nature 449(7163):731–734

    PubMed  CAS  Google Scholar 

  • Albert M, Helin K (2010) Histone methyltransferases in cancer. Semin Cell Dev Biol 21(2):209–220

    PubMed  CAS  Google Scholar 

  • Aletta JM, Cimato TR, Ettinger MJ (1998) Protein methylation: a signal event in post-translational modification. Trends Biochem Sci 23(3):89–91

    PubMed  CAS  Google Scholar 

  • Allfrey VG, Mirsky AE (1964) Structural modifications of histones and their possible role in the regulation of RNA synthesis. Science 144(3618):559

    PubMed  CAS  Google Scholar 

  • Allfrey VG, Faulkner R, Mirsky AE (1964) Acetylation and methylation of histones and their possible role in the regulation of RNA synthesis. Proc Natl Acad Sci USA 51:786–794

    PubMed  CAS  Google Scholar 

  • Anderson KC, Carrasco RD (2011) Pathogenesis of myeloma. Annu Rev Pathol 6:249–274

    PubMed  CAS  Google Scholar 

  • Ayton PM, Chen EH, Cleary ML (2004) Binding to nonmethylated CpG DNA is essential for target recognition, transactivation, and myeloid transformation by an MLL oncoprotein. Mol Cell Biol 24(23):10470–10478

    PubMed  CAS  Google Scholar 

  • Baker LA, Allis CD, Wang GG (2008) PHD fingers in human diseases: disorders arising from misinterpreting epigenetic marks. Mutat Res 647(1–2):3–12

    PubMed  CAS  Google Scholar 

  • Ballare C et al (2012) Phf19 links methylated Lys36 of histone H3 to regulation of Polycomb activity. Nat Struct Mol Biol 19(12):1257–1265

    PubMed  CAS  Google Scholar 

  • Bannister AJ, Kouzarides T (2005) Reversing histone methylation. Nature 436(7054):1103–1106

    PubMed  CAS  Google Scholar 

  • Bannister AJ, Kouzarides T (2011) Regulation of chromatin by histone modifications. Cell Res 21(3):381–395

    PubMed  CAS  Google Scholar 

  • Bannister AJ et al (2001) Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain. Nature 410(6824):120–124

    PubMed  CAS  Google Scholar 

  • Bannister AJ et al (2005) Spatial distribution of di- and tri-methyl lysine 36 of histone H3 at active genes. J Biol Chem 280(18):17732–17736

    PubMed  CAS  Google Scholar 

  • Barski A et al (2007) High-resolution profiling of histone methylations in the human genome. Cell 129(4):823–837

    PubMed  CAS  Google Scholar 

  • Baudat F et al (2010) PRDM9 is a major determinant of meiotic recombination hotspots in humans and mice. Science 327(5967):836–840

    PubMed  CAS  Google Scholar 

  • Beck DB et al (2012a) PR-Set7 and H4K20me1: at the crossroads of genome integrity, cell cycle, chromosome condensation, and transcription. Genes Dev 26(4):325–337

    PubMed  CAS  Google Scholar 

  • Beck DB et al (2012b) The role of PR-Set7 in replication licensing depends on Suv4-20h. Genes Dev 26(23):2580–2589

    PubMed  CAS  Google Scholar 

  • Bell O et al (2007) Localized H3K36 methylation states define histone H4K16 acetylation during transcriptional elongation in Drosophila. EMBO J 26(24):4974–4984

    PubMed  CAS  Google Scholar 

  • Bergman Y, Cedar H (2013) DNA methylation dynamics in health and disease. Nat Struct Mol Biol 20(3):274–281

    PubMed  CAS  Google Scholar 

  • Bernstein BE, Schreiber SL (2002) Global approaches to chromatin. Chem Biol 9(11):1167–1173

    PubMed  CAS  Google Scholar 

  • Bernstein BE et al (2002) Methylation of histone H3 Lys 4 in coding regions of active genes. Proc Natl Acad Sci USA 99(13):8695–8700

    PubMed  CAS  Google Scholar 

  • Blackledge NP et al (2010) CpG islands recruit a histone H3 lysine 36 demethylase. Mol Cell 38(2):179–190

    PubMed  CAS  Google Scholar 

  • Blair LP et al (2011) Epigenetic regulation by lysine demethylase 5 (KDM5) enzymes in cancer. Cancers (Basel) 3(1):1383–1404

    CAS  Google Scholar 

  • Boccuni P et al (2003) The human L(3)MBT polycomb group protein is a transcriptional repressor and interacts physically and functionally with TEL (ETV6). J Biol Chem 278(17):15412–15420

    PubMed  CAS  Google Scholar 

  • Bostick M et al (2007) UHRF1 plays a role in maintaining DNA methylation in mammalian cells. Science 317(5845):1760–1764

    PubMed  CAS  Google Scholar 

  • Brien GL et al (2012) Polycomb PHF19 binds H3K36me3 and recruits PRC2 and demethylase NO66 to embryonic stem cell genes during differentiation. Nat Struct Mol Biol 19(12):1273–1281

    PubMed  CAS  Google Scholar 

  • Briggs SD et al (2001) Histone H3 lysine 4 methylation is mediated by Set1 and required for cell growth and rDNA silencing in Saccharomyces cerevisiae. Genes Dev 15(24):3286–3295

    PubMed  CAS  Google Scholar 

  • Brustel J et al (2011) Coupling mitosis to DNA replication: the emerging role of the histone H4-lysine 20 methyltransferase PR-Set7. Trends Cell Biol 21(8):452–460

    PubMed  CAS  Google Scholar 

  • Cai L et al (2013) An H3K36 methylation-engaging Tudor motif of polycomb-like proteins mediates PRC2 complex targeting. Mol Cell 49(3):571–582

    PubMed  CAS  Google Scholar 

  • Cao R et al (2002) Role of histone H3 lysine 27 methylation in Polycomb-group silencing. Science 298(5595):1039–1043

    PubMed  CAS  Google Scholar 

  • Carrozza MJ et al (2005) Histone H3 methylation by Set2 directs deacetylation of coding regions by Rpd3S to suppress spurious intragenic transcription. Cell 123(4):581–592

    PubMed  CAS  Google Scholar 

  • Centore RC et al (2010) CRL4(Cdt2)-mediated destruction of the histone methyltransferase Set8 prevents premature chromatin compaction in S phase. Mol Cell 40(1):22–33

    PubMed  CAS  Google Scholar 

  • Chang B et al (2007) JMJD6 is a histone arginine demethylase. Science 318(5849):444–447

    PubMed  CAS  Google Scholar 

  • Chang Y et al (2011a) Structural basis of SETD6-mediated regulation of the NF-kB network via methyl-lysine signaling. Nucleic Acids Res 39(15):6380–6389

    PubMed  CAS  Google Scholar 

  • Chang Y et al (2011b) MPP8 mediates the interactions between DNA methyltransferase Dnmt3a and H3K9 methyltransferase GLP/G9a. Nat Commun 2:533

    PubMed  Google Scholar 

  • Chen D et al (1999) Regulation of transcription by a protein methyltransferase. Science 284(5423):2174–2177

    PubMed  CAS  Google Scholar 

  • Chen Z et al (2006) Structural insights into histone demethylation by JMJD2 family members. Cell 125(4):691–702

    PubMed  CAS  Google Scholar 

  • Chen X et al (2011) Symmetrical modification within a nucleosome is not required globally for histone lysine methylation. EMBO Rep 12(3):244–251

    PubMed  CAS  Google Scholar 

  • Chesi M et al (1998) The t(4;14) translocation in myeloma dysregulates both FGFR3 and a novel gene, MMSET, resulting in IgH/MMSET hybrid transcripts. Blood 92(9):3025–3034

    PubMed  CAS  Google Scholar 

  • Chicas A et al (2012) H3K4 demethylation by Jarid1a and Jarid1b contributes to retinoblastoma-mediated gene silencing during cellular senescence. Proc Natl Acad Sci USA 109(23):8971–8976

    PubMed  CAS  Google Scholar 

  • Chin HG et al (2007) Automethylation of G9a and its implication in wider substrate specificity and HP1 binding. Nucleic Acids Res 35(21):7313–7323

    PubMed  CAS  Google Scholar 

  • Chng WJ et al (2007) Genetic events in the pathogenesis of multiple myeloma. Best Pract Res Clin Haematol 20(4):571–596

    PubMed  CAS  Google Scholar 

  • Cho JN et al (2012) Control of seed germination by light-induced histone arginine demethylation activity. Dev Cell 22(4):736–748

    PubMed  CAS  Google Scholar 

  • Christensen J et al (2007) RBP2 belongs to a family of demethylases, specific for tri-and dimethylated lysine 4 on histone 3. Cell 128(6):1063–1076

    PubMed  CAS  Google Scholar 

  • Clark RF, Elgin SC (1992) Heterochromatin protein 1, a known suppressor of position-effect variegation, is highly conserved in Drosophila. Nucleic Acids Res 20(22):6067–6074

    PubMed  CAS  Google Scholar 

  • Clarke SG (2013) Protein methylation at the surface and buried deep: thinking outside the histone box. Trends Biochem Sci 38(5):243–252

    PubMed  CAS  Google Scholar 

  • Cloos PA et al (2006) The putative oncogene GASC1 demethylates tri- and dimethylated lysine 9 on histone H3. Nature 442(7100):307–311

    PubMed  CAS  Google Scholar 

  • Comb DG, Sarkar N, Pinzino CJ (1966) The methylation of lysine residues in protein. J Biol Chem 241(8):1857–1862

    PubMed  CAS  Google Scholar 

  • Cuthbert GL et al (2004) Histone deimination antagonizes arginine methylation. Cell 118(5):545–553

    PubMed  CAS  Google Scholar 

  • Czermin B et al (2002) Drosophila enhancer of Zeste/ESC complexes have a histone H3 methyltransferase activity that marks chromosomal Polycomb sites. Cell 111(2):185–196

    PubMed  CAS  Google Scholar 

  • Dalgliesh GL et al (2010) Systematic sequencing of renal carcinoma reveals inactivation of histone modifying genes. Nature 463(7279):360–363

    PubMed  CAS  Google Scholar 

  • Dang L et al (2009) Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature 462(7274):739–744

    PubMed  CAS  Google Scholar 

  • Dang L, Jin S, Su SM (2010) IDH mutations in glioma and acute myeloid leukemia. Trends Mol Med 16(9):387–397

    PubMed  CAS  Google Scholar 

  • Dann CE III, Bruick RK (2005) Dioxygenases as O2-dependent regulators of the hypoxic response pathway. Biochem Biophys Res Commun 338(1):639–647

    PubMed  CAS  Google Scholar 

  • Daujat S et al (2009) H3K64 trimethylation marks heterochromatin and is dynamically remodeled during developmental reprogramming. Nat Struct Mol Biol 16(7):777–781

    PubMed  CAS  Google Scholar 

  • Dawson MA, Kouzarides T (2012) Cancer epigenetics: from mechanism to therapy. Cell 150(1):12–27

    PubMed  CAS  Google Scholar 

  • de Almeida SF et al (2011) Splicing enhances recruitment of methyltransferase HYPB/Setd2 and methylation of histone H3 Lys36. Nat Struct Mol Biol 18(9):977–983

    PubMed  Google Scholar 

  • De Santa F et al (2007) The histone H3 lysine-27 demethylase Jmjd3 links inflammation to inhibition of polycomb-mediated gene silencing. Cell 130(6):1083–1094

    PubMed  Google Scholar 

  • De Santa F et al (2009) Jmjd3 contributes to the control of gene expression in LPS-activated macrophages. EMBO J 28(21):3341–3352

    PubMed  Google Scholar 

  • Dehe PM et al (2006) Protein interactions within the Set1 complex and their roles in the regulation of histone 3 lysine 4 methylation. J Biol Chem 281(46):35404–35412

    PubMed  CAS  Google Scholar 

  • Dey BK et al (2008) The histone demethylase KDM5b/JARID1b plays a role in cell fate decisions by blocking terminal differentiation. Mol Cell Biol 28(17):5312–5327

    PubMed  CAS  Google Scholar 

  • Di Lorenzo A, Bedford MT (2011) Histone arginine methylation. FEBS Lett 585(13):2024–2031

    PubMed  Google Scholar 

  • Dillon SC et al (2005) The SET-domain protein superfamily: protein lysine methyltransferases. Genome Biol 6(8):227

    PubMed  Google Scholar 

  • Du J et al (2012) Dual binding of chromomethylase domains to H3K9me2-containing nucleosomes directs DNA methylation in plants. Cell 151(1):167–180

    PubMed  CAS  Google Scholar 

  • Ebert A et al (2006) Histone modification and the control of heterochromatic gene silencing in Drosophila. Chromosome Res 14(4):377–392

    PubMed  CAS  Google Scholar 

  • Edmunds JW, Mahadevan LC, Clayton AL (2008) Dynamic histone H3 methylation during gene induction: HYPB/Setd2 mediates all H3K36 trimethylation. EMBO J 27(2):406–420

    PubMed  CAS  Google Scholar 

  • Ernst T et al (2010) Inactivating mutations of the histone methyltransferase gene EZH2 in myeloid disorders. Nat Genet 42(8):722–726

    PubMed  CAS  Google Scholar 

  • Esteve PO et al (2006) Direct interaction between DNMT1 and G9a coordinates DNA and histone methylation during replication. Genes Dev 20(22):3089–3103

    PubMed  CAS  Google Scholar 

  • Ezhkova E et al (2011) EZH1 and EZH2 cogovern histone H3K27 trimethylation and are essential for hair follicle homeostasis and wound repair. Genes Dev 25(5):485–498

    PubMed  CAS  Google Scholar 

  • Fang J et al (2002) Purification and functional characterization of SET8, a nucleosomal histone H4-lysine 20-specific methyltransferase. Curr Biol 12(13):1086–1099

    PubMed  CAS  Google Scholar 

  • Fang R et al (2010) Human LSD2/KDM1b/AOF1 regulates gene transcription by modulating intragenic H3K4me2 methylation. Mol Cell 39(2):222–233

    PubMed  CAS  Google Scholar 

  • Fang R et al (2013) LSD2/KDM1B and its cofactor NPAC/GLYR1 endow a structural and molecular model for regulation of H3K4 demethylation. Mol Cell 49(3):558–570

    PubMed  CAS  Google Scholar 

  • Feng Q et al (2002) Methylation of H3-lysine 79 is mediated by a new family of HMTases without a SET domain. Curr Biol 12(12):1052–1058

    PubMed  CAS  Google Scholar 

  • Fischle W et al (2003) Molecular basis for the discrimination of repressive methyl-lysine marks in histone H3 by Polycomb and HP1 chromodomains. Genes Dev 17(15):1870–1881

    PubMed  CAS  Google Scholar 

  • Fodor BD et al (2010) Mammalian Su(var) genes in chromatin control. Annu Rev Cell Dev Biol 26:471–501

    PubMed  CAS  Google Scholar 

  • Frederiks F et al (2008) Nonprocessive methylation by Dot1 leads to functional redundancy of histone H3K79 methylation states. Nat Struct Mol Biol 15(6):550–557

    PubMed  CAS  Google Scholar 

  • Fuks F et al (2003) The DNA methyltransferases associate with HP1 and the SUV39H1 histone methyltransferase. Nucleic Acids Res 31(9):2305–2312

    PubMed  CAS  Google Scholar 

  • Garcia BA et al (2007) Organismal differences in post-translational modifications in histones H3 and H4. J Biol Chem 282(10):7641–7655

    PubMed  CAS  Google Scholar 

  • Green EM et al (2012) Methylation of H4 lysines 5, 8 and 12 by yeast Set5 calibrates chromatin stress responses. Nat Struct Mol Biol 19(3):361–363

    PubMed  CAS  Google Scholar 

  • Greer EL, Shi Y (2012) Histone methylation: a dynamic mark in health, disease and inheritance. Nat Rev Genet 13(5):343–357

    PubMed  CAS  Google Scholar 

  • Guenther MG et al (2007) A chromatin landmark and transcription initiation at most promoters in human cells. Cell 130(1):77–88

    PubMed  CAS  Google Scholar 

  • Hahn P et al (2010) Analysis of Jmjd6 cellular localization and testing for its involvement in histone demethylation. PLoS One 5(10):e13769

    PubMed  Google Scholar 

  • Hake SB, Xiao A, Allis CD (2007) Linking the epigenetic ‘language’ of covalent histone modifications to cancer. Br J Cancer 96(Suppl):R31–R39

    PubMed  Google Scholar 

  • Hashimoto H, Vertino PM, Cheng X (2010) Molecular coupling of DNA methylation and histone methylation. Epigenomics 2(5):657–669

    PubMed  CAS  Google Scholar 

  • Hata K et al (2002) Dnmt3L cooperates with the Dnmt3 family of de novo DNA methyltransferases to establish maternal imprints in mice. Development 129(8):1983–1993

    PubMed  CAS  Google Scholar 

  • Heintzman ND et al (2007) Distinct and predictive chromatin signatures of transcriptional promoters and enhancers in the human genome. Nat Genet 39(3):311–318

    PubMed  CAS  Google Scholar 

  • Hock H (2012) A complex Polycomb issue: the two faces of EZH2 in cancer. Genes Dev 26(8):751–755

    PubMed  CAS  Google Scholar 

  • Horton JR et al (2010) Enzymatic and structural insights for substrate specificity of a family of jumonji histone lysine demethylases. Nat Struct Mol Biol 17(1):38–43

    PubMed  CAS  Google Scholar 

  • Hudlebusch HR et al (2011a) The histone methyltransferase and putative oncoprotein MMSET is overexpressed in a large variety of human tumors. Clin Cancer Res 17(9):2919–2933

    PubMed  CAS  Google Scholar 

  • Hudlebusch HR et al (2011b) MMSET is highly expressed and associated with aggressiveness in neuroblastoma. Cancer Res 71(12):4226–4235

    PubMed  CAS  Google Scholar 

  • Hung T et al (2009) ING4 mediates crosstalk between histone H3 K4 trimethylation and H3 acetylation to attenuate cellular transformation. Mol Cell 33(2):248–256

    PubMed  CAS  Google Scholar 

  • Iwase S et al (2007) The X-linked mental retardation gene SMCX/JARID1C defines a family of histone H3 lysine 4 demethylases. Cell 128(6):1077–1088

    PubMed  CAS  Google Scholar 

  • Jackson JP et al (2002) Control of CpNpG DNA methylation by the KRYPTONITE histone H3 methyltransferase. Nature 416(6880):556–560

    PubMed  CAS  Google Scholar 

  • Jacobs SA, Khorasanizadeh S (2002) Structure of HP1 chromodomain bound to a lysine 9-methylated histone H3 tail. Science 295(5562):2080–2083

    PubMed  CAS  Google Scholar 

  • James TC, Elgin SC (1986) Identification of a nonhistone chromosomal protein associated with heterochromatin in Drosophila melanogaster and its gene. Mol Cell Biol 6(11):3862–3872

    PubMed  CAS  Google Scholar 

  • Jensen LR et al (2005) Mutations in the JARID1C gene, which is involved in transcriptional regulation and chromatin remodeling, cause X-linked mental retardation. Am J Hum Genet 76(2):227–236

    PubMed  CAS  Google Scholar 

  • Jenuwein T, Allis CD (2001) Translating the histone code. Science 293(5532):1074–1080

    PubMed  CAS  Google Scholar 

  • Jia D et al (2007) Structure of Dnmt3a bound to Dnmt3L suggests a model for de novo DNA methylation. Nature 449(7159):248–251

    PubMed  CAS  Google Scholar 

  • Johnson L, Cao X, Jacobsen S (2002) Interplay between two epigenetic marks. DNA methylation and histone H3 lysine 9 methylation. Curr Biol 12(16):1360–1367

    PubMed  CAS  Google Scholar 

  • Jones B et al (2008) The histone H3K79 methyltransferase Dot1L is essential for mammalian development and heterochromatin structure. PLoS Genet 4(9):e1000190

    PubMed  Google Scholar 

  • Jorgensen S et al (2011) SET8 is degraded via PCNA-coupled CRL4(CDT2) ubiquitylation in S phase and after UV irradiation. J Cell Biol 192(1):43–54

    PubMed  Google Scholar 

  • Jorgensen S, Schotta G, Sorensen CS (2013) Histone H4 lysine 20 methylation: key player in epigenetic regulation of genomic integrity. Nucleic Acids Res 41(5):2797–2806

    PubMed  CAS  Google Scholar 

  • Joshi AA, Struhl K (2005) Eaf3 chromodomain interaction with methylated H3-K36 links histone deacetylation to Pol II elongation. Mol Cell 20(6):971–978

    PubMed  CAS  Google Scholar 

  • Keats JJ et al (2003) In multiple myeloma, t(4;14)(p16;q32) is an adverse prognostic factor irrespective of FGFR3 expression. Blood 101(4):1520–1529

    PubMed  CAS  Google Scholar 

  • Keogh MC et al (2005) Cotranscriptional set2 methylation of histone H3 lysine 36 recruits a repressive Rpd3 complex. Cell 123(4):593–605

    PubMed  CAS  Google Scholar 

  • Khuong-Quang DA et al (2012) K27M mutation in histone H3.3 defines clinically and biologically distinct subgroups of pediatric diffuse intrinsic pontine gliomas. Acta Neuropathol 124(3):439–447

    PubMed  CAS  Google Scholar 

  • Kim S, Paik WK (1965) Studies on the origin of epsilon-N-methyl-L-lysine in protein. J Biol Chem 240(12):4629–4634

    PubMed  CAS  Google Scholar 

  • Kim J et al (2006) Tudor, MBT and chromo domains gauge the degree of lysine methylation. EMBO Rep 7(4):397–403

    PubMed  CAS  Google Scholar 

  • Kinney SR, Pradhan S (2011) Regulation of expression and activity of DNA (cytosine-5) methyltransferases in mammalian cells. Prog Mol Biol Transl Sci 101:311–333

    PubMed  CAS  Google Scholar 

  • Kizer KO et al (2005) A novel domain in Set2 mediates RNA polymerase II interaction and couples histone H3 K36 methylation with transcript elongation. Mol Cell Biol 25(8):3305–3316

    PubMed  CAS  Google Scholar 

  • Klose RJ et al (2006) The transcriptional repressor JHDM3A demethylates trimethyl histone H3 lysine 9 and lysine 36. Nature 442(7100):312–316

    PubMed  CAS  Google Scholar 

  • Klose RJ et al (2007) The retinoblastoma binding protein RBP2 is an H3K4 demethylase. Cell 128(5):889–900

    PubMed  CAS  Google Scholar 

  • Koh AS et al (2008) Aire employs a histone-binding module to mediate immunological tolerance, linking chromatin regulation with organ-specific autoimmunity. Proc Natl Acad Sci USA 105(41):15878–15883

    PubMed  CAS  Google Scholar 

  • Koh AS et al (2010) Global relevance of Aire binding to hypomethylated lysine-4 of histone-3. Proc Natl Acad Sci USA 107(29):13016–13021

    PubMed  CAS  Google Scholar 

  • Kolasinska-Zwierz P et al (2009) Differential chromatin marking of introns and expressed exons by H3K36me3. Nat Genet 41(3):376–381

    PubMed  CAS  Google Scholar 

  • Kooistra SM, Helin K (2012) Molecular mechanisms and potential functions of histone demethylases. Nat Rev Mol Cell Biol 13(5):297–311

    PubMed  CAS  Google Scholar 

  • Kouzarides T (2007) Chromatin modifications and their function. Cell 128(4):693–705

    PubMed  CAS  Google Scholar 

  • Kouzminova E, Selker EU (2001) dim-2 encodes a DNA methyltransferase responsible for all known cytosine methylation in Neurospora. EMBO J 20(15):4309–4323

    PubMed  CAS  Google Scholar 

  • Krishnan S, Horowitz S, Trievel RC (2011) Structure and function of histone H3 lysine 9 methyltransferases and demethylases. Chembiochem 12(2):254–263

    PubMed  CAS  Google Scholar 

  • Krogan NJ et al (2002) COMPASS, a histone H3 (Lysine 4) methyltransferase required for telomeric silencing of gene expression. J Biol Chem 277(13):10753–10755

    PubMed  CAS  Google Scholar 

  • Krogan NJ et al (2003) Methylation of histone H3 by Set2 in Saccharomyces cerevisiae is linked to transcriptional elongation by RNA polymerase II. Mol Cell Biol 23(12):4207–4218

    PubMed  CAS  Google Scholar 

  • Kruidenier L et al (2012) A selective jumonji H3K27 demethylase inhibitor modulates the proinflammatory macrophage response. Nature 488(7411):404–408

    PubMed  CAS  Google Scholar 

  • Kuo AJ et al (2011) NSD2 links dimethylation of histone H3 at lysine 36 to oncogenic programming. Mol Cell 44(4):609–620

    PubMed  CAS  Google Scholar 

  • Kuo AJ et al (2012) The BAH domain of ORC1 links H4K20me2 to DNA replication licensing and Meier-Gorlin syndrome. Nature 484(7392):115–119

    PubMed  CAS  Google Scholar 

  • Kuzmichev A et al (2002) Histone methyltransferase activity associated with a human multiprotein complex containing the Enhancer of Zeste protein. Genes Dev 16(22):2893–2905

    PubMed  CAS  Google Scholar 

  • Lachner M et al (2001) Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins. Nature 410(6824):116–120

    PubMed  CAS  Google Scholar 

  • Lacoste N et al (2002) Disruptor of telomeric silencing-1 is a chromatin-specific histone H3 methyltransferase. J Biol Chem 277(34):30421–30424

    PubMed  CAS  Google Scholar 

  • Lan F, Shi Y (2009) Epigenetic regulation: methylation of histone and non-histone proteins. Sci China C Life Sci 52(4):311–322

    PubMed  CAS  Google Scholar 

  • Lan F et al (2007a) S. pombe LSD1 homologs regulate heterochromatin propagation and euchromatic gene transcription. Mol Cell 26(1):89–101

    PubMed  CAS  Google Scholar 

  • Lan F et al (2007b) A histone H3 lysine 27 demethylase regulates animal posterior development. Nature 449(7163):689–694

    PubMed  CAS  Google Scholar 

  • Lan F et al (2007c) Recognition of unmethylated histone H3 lysine 4 links BHC80 to LSD1-mediated gene repression. Nature 448(7154):718–722

    PubMed  CAS  Google Scholar 

  • Lauberth SM et al (2013) H3K4me3 interactions with TAF3 regulate preinitiation complex assembly and selective gene activation. Cell 152(5):1021–1036

    PubMed  CAS  Google Scholar 

  • Lee MG et al (2005) An essential role for CoREST in nucleosomal histone 3 lysine 4 demethylation. Nature 437(7057):432–435

    PubMed  CAS  Google Scholar 

  • Lee MG et al (2007a) Physical and functional association of a trimethyl H3K4 demethylase and Ring6a/MBLR, a polycomb-like protein. Cell 128(5):877–887

    PubMed  CAS  Google Scholar 

  • Lee MG et al (2007b) Demethylation of H3K27 regulates polycomb recruitment and H2A ubiquitination. Science 318(5849):447–450

    PubMed  CAS  Google Scholar 

  • Lehnertz B et al (2003) Suv39h-mediated histone H3 lysine 9 methylation directs DNA methylation to major satellite repeats at pericentric heterochromatin. Curr Biol 13(14):1192–1200

    PubMed  CAS  Google Scholar 

  • Levy D et al (2011) Lysine methylation of the NF-kappaB subunit RelA by SETD6 couples activity of the histone methyltransferase GLP at chromatin to tonic repression of NF-kappaB signaling. Nat Immunol 12(1):29–36

    PubMed  CAS  Google Scholar 

  • Lewis PW et al (2013) Inhibition of PRC2 activity by a gain-of-function H3 mutation found in pediatric glioblastoma. Science 340(6134):857–861

    PubMed  CAS  Google Scholar 

  • Li H et al (2006) Molecular basis for site-specific read-out of histone H3K4me3 by the BPTF PHD finger of NURF. Nature 442(7098):91–95

    PubMed  CAS  Google Scholar 

  • Li B et al (2007a) Combined action of PHD and chromo domains directs the Rpd3S HDAC to transcribed chromatin. Science 316(5827):1050–1054

    PubMed  CAS  Google Scholar 

  • Li H et al (2007b) Structural basis for lower lysine methylation state-specific readout by MBT repeats of L3MBTL1 and an engineered PHD finger. Mol Cell 28(4):677–691

    PubMed  CAS  Google Scholar 

  • Li Y et al (2009) The target of the NSD family of histone lysine methyltransferases depends on the nature of the substrate. J Biol Chem 284(49):34283–34295

    PubMed  CAS  Google Scholar 

  • Lin W et al (2011) Loss of the retinoblastoma binding protein 2 (RBP2) histone demethylase suppresses tumorigenesis in mice lacking Rb1 or Men1. Proc Natl Acad Sci USA 108(33):13379–13386

    PubMed  CAS  Google Scholar 

  • Lindroth AM et al (2001) Requirement of CHROMOMETHYLASE3 for maintenance of CpXpG methylation. Science 292(5524):2077–2080

    PubMed  CAS  Google Scholar 

  • Liu W et al (2010) PHF8 mediates histone H4 lysine 20 demethylation events involved in cell cycle progression. Nature 466(7305):508–512

    PubMed  CAS  Google Scholar 

  • Liu X et al (2013) UHRF1 targets DNMT1 for DNA methylation through cooperative binding of hemi-methylated DNA and methylated H3K9. Nat Commun 4:1563

    PubMed  Google Scholar 

  • Lu C et al (2012) IDH mutation impairs histone demethylation and results in a block to cell differentiation. Nature 483(7390):474–478

    PubMed  CAS  Google Scholar 

  • Makishima H et al (2010) Novel homo- and hemizygous mutations in EZH2 in myeloid malignancies. Leukemia 24(10):1799–1804

    PubMed  CAS  Google Scholar 

  • Mantri M et al (2010) Crystal structure of the 2-oxoglutarate- and Fe(II)-dependent lysyl hydroxylase JMJD6. J Mol Biol 401(2):211–222

    Google Scholar 

  • Margueron R, Reinberg D (2010) Chromatin structure and the inheritance of epigenetic information. Nat Rev Genet 11(4):285–296

    PubMed  CAS  Google Scholar 

  • Margueron R, Reinberg D (2011) The Polycomb complex PRC2 and its mark in life. Nature 469(7330):343–349

    PubMed  CAS  Google Scholar 

  • Margueron R et al (2008) Ezh1 and Ezh2 maintain repressive chromatin through different mechanisms. Mol Cell 32(4):503–518

    PubMed  CAS  Google Scholar 

  • Margueron R et al (2009) Role of the polycomb protein EED in the propagation of repressive histone marks. Nature 461(7265):762–767

    PubMed  CAS  Google Scholar 

  • Matsui T et al (2010) Proviral silencing in embryonic stem cells requires the histone methyltransferase ESET. Nature 464(7290):927–931

    PubMed  CAS  Google Scholar 

  • Matthews AG et al (2007) RAG2 PHD finger couples histone H3 lysine 4 trimethylation with V(D)J recombination. Nature 450(7172):1106–1110

    PubMed  CAS  Google Scholar 

  • McCabe MT et al (2012) EZH2 inhibition as a therapeutic strategy for lymphoma with EZH2-activating mutations. Nature 492(7427):108–112

    PubMed  CAS  Google Scholar 

  • Metzger E et al (2005) LSD1 demethylates repressive histone marks to promote androgen-receptor-dependent transcription. Nature 437(7057):436–439

    PubMed  CAS  Google Scholar 

  • Miller T et al (2001) COMPASS: a complex of proteins associated with a trithorax-related SET domain protein. Proc Natl Acad Sci USA 98(23):12902–12907

    PubMed  CAS  Google Scholar 

  • Min J et al (2003a) Structure of the catalytic domain of human DOT1L, a non-SET domain nucleosomal histone methyltransferase. Cell 112(5):711–723

    PubMed  CAS  Google Scholar 

  • Min J, Zhang Y, Xu RM (2003b) Structural basis for specific binding of Polycomb chromodomain to histone H3 methylated at Lys 27. Genes Dev 17(15):1823–1828

    PubMed  CAS  Google Scholar 

  • Min J et al (2007) L3MBTL1 recognition of mono- and dimethylated histones. Nat Struct Mol Biol 14(12):1229–1230

    PubMed  CAS  Google Scholar 

  • Mohan M et al (2010) Linking H3K79 trimethylation to Wnt signaling through a novel Dot1-containing complex (DotCom). Genes Dev 24(6):574–589

    PubMed  CAS  Google Scholar 

  • Morin RD et al (2010) Somatic mutations altering EZH2 (Tyr641) in follicular and diffuse large B-cell lymphomas of germinal-center origin. Nat Genet 42(2):181–185

    PubMed  CAS  Google Scholar 

  • Mosammaparast N, Shi Y (2010) Reversal of histone methylation: biochemical and molecular mechanisms of histone demethylases. Annu Rev Biochem 79:155–179

    PubMed  CAS  Google Scholar 

  • Mousavi K et al (2012) Polycomb protein Ezh1 promotes RNA polymerase II elongation. Mol Cell 45(2):255–262

    PubMed  CAS  Google Scholar 

  • Muller J et al (2002) Histone methyltransferase activity of a Drosophila Polycomb group repressor complex. Cell 111(2):197–208

    PubMed  CAS  Google Scholar 

  • Murray K (1964) The occurrence of epsilon-N-methyl lysine in histones. Biochemistry 3:10–15

    PubMed  CAS  Google Scholar 

  • Musselman CA, Kutateladze TG (2009) PHD fingers: epigenetic effectors and potential drug targets. Mol Interv 9(6):314–323

    PubMed  CAS  Google Scholar 

  • Musselman CA, Kutateladze TG (2011) Handpicking epigenetic marks with PHD fingers. Nucleic Acids Res 39(21):9061–9071

    PubMed  CAS  Google Scholar 

  • Musselman CA et al (2012) Molecular basis for H3K36me3 recognition by the Tudor domain of PHF1. Nat Struct Mol Biol 19(12):1266–1272

    PubMed  CAS  Google Scholar 

  • Nagy PL et al (2002) A trithorax-group complex purified from Saccharomyces cerevisiae is required for methylation of histone H3. Proc Natl Acad Sci USA 99(1):90–94

    PubMed  CAS  Google Scholar 

  • Nakayama J et al (2001) Role of histone H3 lysine 9 methylation in epigenetic control of heterochromatin assembly. Science 292(5514):110–113

    PubMed  CAS  Google Scholar 

  • Ng HH et al (2002) Lysine methylation within the globular domain of histone H3 by Dot1 is important for telomeric silencing and Sir protein association. Genes Dev 16(12):1518–1527

    PubMed  CAS  Google Scholar 

  • Ng HH et al (2003) Targeted recruitment of Set1 histone methylase by elongating Pol II provides a localized mark and memory of recent transcriptional activity. Mol Cell 11(3):709–719

    PubMed  CAS  Google Scholar 

  • Ng SS et al (2009) Dynamic protein methylation in chromatin biology. Cell Mol Life Sci 66(3):407–422

    PubMed  CAS  Google Scholar 

  • Nguyen AT, Zhang Y (2011) The diverse functions of Dot1 and H3K79 methylation. Genes Dev 25(13):1345–1358

    PubMed  CAS  Google Scholar 

  • Nielsen PR et al (2002) Structure of the HP1 chromodomain bound to histone H3 methylated at lysine 9. Nature 416(6876):103–107

    PubMed  CAS  Google Scholar 

  • Nikoloski G et al (2010) Somatic mutations of the histone methyltransferase gene EZH2 in myelodysplastic syndromes. Nat Genet 42(8):665–667

    PubMed  CAS  Google Scholar 

  • Nimura K et al (2009) A histone H3 lysine 36 trimethyltransferase links Nkx2-5 to Wolf-Hirschhorn syndrome. Nature 460(7252):287–291

    PubMed  CAS  Google Scholar 

  • Nishioka K et al (2002) PR-Set7 is a nucleosome-specific methyltransferase that modifies lysine 20 of histone H4 and is associated with silent chromatin. Mol Cell 9(6):1201–1213

    PubMed  CAS  Google Scholar 

  • Nislow C, Ray E, Pillus L (1997) SET1, a yeast member of the trithorax family, functions in transcriptional silencing and diverse cellular processes. Mol Biol Cell 8(12):2421–2436

    PubMed  CAS  Google Scholar 

  • Ntziachristos P et al (2012) Genetic inactivation of the polycomb repressive complex 2 in T cell acute lymphoblastic leukemia. Nat Med 18(2):298–301

    PubMed  CAS  Google Scholar 

  • Oda H et al (2009) Monomethylation of histone H4-lysine 20 is involved in chromosome structure and stability and is essential for mouse development. Mol Cell Biol 29(8):2278–2295

    PubMed  CAS  Google Scholar 

  • Oda H et al (2010) Regulation of the histone H4 monomethylase PR-Set7 by CRL4(Cdt2)-mediated PCNA-dependent degradation during DNA damage. Mol Cell 40(3):364–376

    PubMed  CAS  Google Scholar 

  • Okada Y et al (2005) hDOT1L links histone methylation to leukemogenesis. Cell 121(2):167–178

    PubMed  CAS  Google Scholar 

  • Ooi SK et al (2007) DNMT3L connects unmethylated lysine 4 of histone H3 to de novo methylation of DNA. Nature 448(7154):714–717

    PubMed  CAS  Google Scholar 

  • Outchkourov NS et al (2013) Balancing of histone H3K4 methylation states by the Kdm5c/SMCX histone demethylase modulates promoter and enhancer function. Cell Rep 3(4):1071–1079

    PubMed  CAS  Google Scholar 

  • Paik WK, Kim S (1967) Enzymatic methylation of protein fractions from calf thymus nuclei. Biochem Biophys Res Commun 29(1):14–20

    PubMed  CAS  Google Scholar 

  • Paik WK, Kim S (1968) Protein methylase I. Purification and properties of the enzyme. J Biol Chem 243(9):2108–2114

    PubMed  CAS  Google Scholar 

  • Paik WK, Kim S (1969a) Enzymatic methylation of histones. Arch Biochem Biophys 134(2):632–637

    PubMed  CAS  Google Scholar 

  • Paik WK, Kim S (1969b) Protein methylation in rat brain in vitro. J Neurochem 16(8):1257–1261

    PubMed  CAS  Google Scholar 

  • Paik WK, Kim S (1971) Protein methylation. Science 174(4005):114–119

    PubMed  CAS  Google Scholar 

  • Parsons DW et al (2008) An integrated genomic analysis of human glioblastoma multiforme. Science 321(5897):1807–1812

    PubMed  CAS  Google Scholar 

  • Parvanov ED, Petkov PM, Paigen K (2010) Prdm9 controls activation of mammalian recombination hotspots. Science 327(5967):835

    PubMed  CAS  Google Scholar 

  • Paul S et al (2013) Chd5 requires PHD-mediated histone 3 binding for tumor suppression. Cell Rep 3(1):92–102

    PubMed  CAS  Google Scholar 

  • Pena PV et al (2006) Molecular mechanism of histone H3K4me3 recognition by plant homeodomain of ING2. Nature 442(7098):100–103

    PubMed  CAS  Google Scholar 

  • Peters AH et al (2001) Loss of the Suv39h histone methyltransferases impairs mammalian heterochromatin and genome stability. Cell 107(3):323–337

    PubMed  CAS  Google Scholar 

  • Pinheiro I et al (2012) Prdm3 and Prdm16 are H3K9me1 methyltransferases required for mammalian heterochromatin integrity. Cell 150(5):948–960

    PubMed  CAS  Google Scholar 

  • Price JC et al (2005) Kinetic dissection of the catalytic mechanism of taurine:alpha-ketoglutarate dioxygenase (TauD) from Escherichia coli. Biochemistry 44(22):8138–8147

    PubMed  CAS  Google Scholar 

  • Qi HH et al (2010) Histone H4K20/H3K9 demethylase PHF8 regulates zebrafish brain and craniofacial development. Nature 466(7305):503–507

    PubMed  CAS  Google Scholar 

  • Qi W et al (2012) Selective inhibition of Ezh2 by a small molecule inhibitor blocks tumor cells proliferation. Proc Natl Acad Sci USA 109(52):21360–21365

    PubMed  CAS  Google Scholar 

  • Ramon-Maiques S et al (2007) The plant homeodomain finger of RAG2 recognizes histone H3 methylated at both lysine-4 and arginine-2. Proc Natl Acad Sci USA 104(48):18993–18998

    PubMed  CAS  Google Scholar 

  • Rea S et al (2000) Regulation of chromatin structure by site-specific histone H3 methyltransferases. Nature 406(6796):593–599

    PubMed  CAS  Google Scholar 

  • Rice JC et al (2002) Mitotic-specific methylation of histone H4 Lys 20 follows increased PR-Set7 expression and its localization to mitotic chromosomes. Genes Dev 16(17):2225–2230

    PubMed  CAS  Google Scholar 

  • Riising EM, Helin K (2012) A new role for the polycomb group protein Ezh1 in promoting transcription. Mol Cell 45(2):145–146

    PubMed  CAS  Google Scholar 

  • Roguev A et al (2001) The Saccharomyces cerevisiae Set1 complex includes an Ash2 homologue and methylates histone 3 lysine 4. EMBO J 20(24):7137–7148

    PubMed  CAS  Google Scholar 

  • Rothbart SB et al (2012) Association of UHRF1 with methylated H3K9 directs the maintenance of DNA methylation. Nat Struct Mol Biol 19(11):1155–1160

    PubMed  CAS  Google Scholar 

  • Rudolph T et al (2007) Heterochromatin formation in Drosophila is initiated through active removal of H3K4 methylation by the LSD1 homolog SU(VAR)3-3. Mol Cell 26(1):103–115

    PubMed  CAS  Google Scholar 

  • Ruthenburg AJ et al (2007) Multivalent engagement of chromatin modifications by linked binding modules. Nat Rev Mol Cell Biol 8(12):983–994

    PubMed  CAS  Google Scholar 

  • Sakaguchi A, Steward R (2007) Aberrant monomethylation of histone H4 lysine 20 activates the DNA damage checkpoint in Drosophila melanogaster. J Cell Biol 176(2):155–162

    PubMed  CAS  Google Scholar 

  • Sakaguchi A et al (2008) Functional characterization of the Drosophila Hmt4-20/Suv4-20 histone methyltransferase. Genetics 179(1):317–322

    PubMed  CAS  Google Scholar 

  • Sampath SC et al (2007) Methylation of a histone mimic within the histone methyltransferase G9a regulates protein complex assembly. Mol Cell 27(4):596–608

    PubMed  CAS  Google Scholar 

  • Santos-Rosa H et al (2002) Active genes are tri-methylated at K4 of histone H3. Nature 419(6905):407–411

    PubMed  CAS  Google Scholar 

  • Santra M et al (2003) A subset of multiple myeloma harboring the t(4;14)(p16;q32) translocation lacks FGFR3 expression but maintains an IGH/MMSET fusion transcript. Blood 101(6):2374–2376

    PubMed  CAS  Google Scholar 

  • Schaefer A et al (2009) Control of cognition and adaptive behavior by the GLP/G9a epigenetic suppressor complex. Neuron 64(5):678–691

    PubMed  CAS  Google Scholar 

  • Schaefer A, Tarakhovsky A, Greengard P (2011) Epigenetic mechanisms of mental retardation. Prog Drug Res 67:125–146

    PubMed  CAS  Google Scholar 

  • Schneider R et al (2004) Histone H3 lysine 4 methylation patterns in higher eukaryotic genes. Nat Cell Biol 6(1):73–77

    PubMed  CAS  Google Scholar 

  • Schotta G et al (2004) A silencing pathway to induce H3-K9 and H4-K20 trimethylation at constitutive heterochromatin. Genes Dev 18(11):1251–1262

    PubMed  CAS  Google Scholar 

  • Schotta G et al (2008) A chromatin-wide transition to H4K20 monomethylation impairs genome integrity and programmed DNA rearrangements in the mouse. Genes Dev 22(15):2048–2061

    PubMed  CAS  Google Scholar 

  • Schubeler D et al (2004) The histone modification pattern of active genes revealed through genome-wide chromatin analysis of a higher eukaryote. Genes Dev 18(11):1263–1271

    PubMed  Google Scholar 

  • Schultz DC et al (2002) SETDB1: a novel KAP-1-associated histone H3, lysine 9-specific methyltransferase that contributes to HP1-mediated silencing of euchromatic genes by KRAB zinc-finger proteins. Genes Dev 16(8):919–932

    PubMed  CAS  Google Scholar 

  • Schwartzentruber J et al (2012) Driver mutations in histone H3.3 and chromatin remodelling genes in paediatric glioblastoma. Nature 482(7384):226–231

    PubMed  CAS  Google Scholar 

  • Shanower GA et al (2005) Characterization of the grappa gene, the Drosophila histone H3 lysine 79 methyltransferase. Genetics 169(1):173–184

    PubMed  CAS  Google Scholar 

  • Sharif J et al (2007) The SRA protein Np95 mediates epigenetic inheritance by recruiting Dnmt1 to methylated DNA. Nature 450(7171):908–912

    PubMed  CAS  Google Scholar 

  • Sharma SV et al (2010) A chromatin-mediated reversible drug-tolerant state in cancer cell subpopulations. Cell 141(1):69–80

    PubMed  CAS  Google Scholar 

  • Shen X et al (2008) EZH1 mediates methylation on histone H3 lysine 27 and complements EZH2 in maintaining stem cell identity and executing pluripotency. Mol Cell 32(4):491–502

    PubMed  CAS  Google Scholar 

  • Shi X, Gozani O (2005) The fellowships of the INGs. J Cell Biochem 96(6):1127–1136

    PubMed  CAS  Google Scholar 

  • Shi Y, Whetstine JR (2007) Dynamic regulation of histone lysine methylation by demethylases. Mol Cell 25(1):1–14

    PubMed  CAS  Google Scholar 

  • Shi Y et al (2004) Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell 119(7):941–953

    PubMed  CAS  Google Scholar 

  • Shi X et al (2006) ING2 PHD domain links histone H3 lysine 4 methylation to active gene repression. Nature 442(7098):96–99

    PubMed  CAS  Google Scholar 

  • Shi X et al (2007) Proteome-wide analysis in Saccharomyces cerevisiae identifies several PHD fingers as novel direct and selective binding modules of histone H3 methylated at either lysine 4 or lysine 36. J Biol Chem 282(4):2450–2455

    PubMed  CAS  Google Scholar 

  • Shilatifard A (2012) The COMPASS family of histone H3K4 methylases: mechanisms of regulation in development and disease pathogenesis. Annu Rev Biochem 81:65–95

    PubMed  CAS  Google Scholar 

  • Simon C et al (2012) A key role for EZH2 and associated genes in mouse and human adult T-cell acute leukemia. Genes Dev 26(7):651–656

    PubMed  CAS  Google Scholar 

  • Sims RJ III, Reinberg D (2006) Histone H3 Lys 4 methylation: caught in a bind? Genes Dev 20(20):2779–2786

    PubMed  CAS  Google Scholar 

  • Sims RJ 3rd et al (2007) Recognition of trimethylated histone H3 lysine 4 facilitates the recruitment of transcription postinitiation factors and pre-mRNA splicing. Mol Cell 28(4):665–676

    PubMed  CAS  Google Scholar 

  • Sirinupong N et al (2011) Structural insights into the autoinhibition and posttranslational activation of histone methyltransferase SmyD3. J Mol Biol 406(1):149–159

    PubMed  CAS  Google Scholar 

  • Smolle M, Workman JL (2013) Transcription-associated histone modifications and cryptic transcription. Biochim Biophys Acta 1829(1):84–97

    PubMed  CAS  Google Scholar 

  • Smolle M, Workman JL, Venkatesh S (2013) reSETting chromatin during transcription elongation. Epigenetics 8(1):10–15

    PubMed  CAS  Google Scholar 

  • Sneeringer CJ et al (2010) Coordinated activities of wild-type plus mutant EZH2 drive tumor-associated hypertrimethylation of lysine 27 on histone H3 (H3K27) in human B-cell lymphomas. Proc Natl Acad Sci USA 107(49):20980–20985

    PubMed  CAS  Google Scholar 

  • Sommermeyer V et al (2013) Spp1, a member of the Set1 complex, promotes meiotic DSB formation in promoters by tethering histone H3K4 methylation sites to chromosome axes. Mol Cell 49(1):43–54

    PubMed  CAS  Google Scholar 

  • Stec I et al (1998) WHSC1, a 90 kb SET domain-containing gene, expressed in early development and homologous to a Drosophila dysmorphy gene maps in the Wolf-Hirschhorn syndrome critical region and is fused to IgH in t(4;14) multiple myeloma. Hum Mol Genet 7(7):1071–1082

    PubMed  CAS  Google Scholar 

  • Steward MM et al (2006) Molecular regulation of H3K4 trimethylation by ASH2L, a shared subunit of MLL complexes. Nat Struct Mol Biol 13(9):852–854

    PubMed  CAS  Google Scholar 

  • Strahl BD, Allis CD (2000) The language of covalent histone modifications. Nature 403(6765):41–45

    PubMed  CAS  Google Scholar 

  • Strahl BD et al (1999) Methylation of histone H3 at lysine 4 is highly conserved and correlates with transcriptionally active nuclei in Tetrahymena. Proc Natl Acad Sci USA 96(26):14967–14972

    PubMed  CAS  Google Scholar 

  • Strahl BD et al (2002) Set2 is a nucleosomal histone H3-selective methyltransferase that mediates transcriptional repression. Mol Cell Biol 22(5):1298–1306

    PubMed  CAS  Google Scholar 

  • Suganuma T, Workman JL (2011) Signals and combinatorial functions of histone modifications. Annu Rev Biochem 80:473–499

    PubMed  CAS  Google Scholar 

  • Tachibana M et al (2001) Set domain-containing protein, G9a, is a novel lysine-preferring mammalian histone methyltransferase with hyperactivity and specific selectivity to lysines 9 and 27 of histone H3. J Biol Chem 276(27):25309–25317

    PubMed  CAS  Google Scholar 

  • Tachibana M et al (2002) G9a histone methyltransferase plays a dominant role in euchromatic histone H3 lysine 9 methylation and is essential for early embryogenesis. Genes Dev 16(14):1779–1791

    PubMed  CAS  Google Scholar 

  • Tachibana M et al (2005) Histone methyltransferases G9a and GLP form heteromeric complexes and are both crucial for methylation of euchromatin at H3-K9. Genes Dev 19(7):815–826

    PubMed  CAS  Google Scholar 

  • Tachibana M et al (2008) G9a/GLP complexes independently mediate H3K9 and DNA methylation to silence transcription. EMBO J 27(20):2681–2690

    PubMed  CAS  Google Scholar 

  • Tahiliani M et al (2007) The histone H3K4 demethylase SMCX links REST target genes to X-linked mental retardation. Nature 447(7144):601–605

    PubMed  CAS  Google Scholar 

  • Takahashi YH et al (2009) Regulation of H3K4 trimethylation via Cps40 (Spp1) of COMPASS is monoubiquitination independent: implication for a Phe/Tyr switch by the catalytic domain of Set1. Mol Cell Biol 29(13):3478–3486

    PubMed  CAS  Google Scholar 

  • Tamaru H, Selker EU (2001) A histone H3 methyltransferase controls DNA methylation in Neurospora crassa. Nature 414(6861):277–283

    PubMed  CAS  Google Scholar 

  • Tan M et al (2011) Identification of 67 histone marks and histone lysine crotonylation as a new type of histone modification. Cell 146(6):1016–1028

    PubMed  CAS  Google Scholar 

  • Tanaka Y et al (2007) Trithorax-group protein ASH1 methylates histone H3 lysine 36. Gene 397(1–2):161–168

    PubMed  CAS  Google Scholar 

  • Tardat M et al (2007) PR-Set7-dependent lysine methylation ensures genome replication and stability through S phase. J Cell Biol 179(7):1413–1426

    PubMed  CAS  Google Scholar 

  • Tardat M et al (2010) The histone H4 Lys 20 methyltransferase PR-Set7 regulates replication origins in mammalian cells. Nat Cell Biol 12(11):1086–1093

    PubMed  CAS  Google Scholar 

  • Taverna SD et al (2006) Yng1 PHD finger binding to H3 trimethylated at K4 promotes NuA3 HAT activity at K14 of H3 and transcription at a subset of targeted ORFs. Mol Cell 24(5):785–796

    PubMed  CAS  Google Scholar 

  • Taverna SD et al (2007) How chromatin-binding modules interpret histone modifications: lessons from professional pocket pickers. Nat Struct Mol Biol 14(11):1025–1040

    PubMed  CAS  Google Scholar 

  • Trojer P, Reinberg D (2008) Beyond histone methyl-lysine binding: how malignant brain tumor (MBT) protein L3MBTL1 impacts chromatin structure. Cell Cycle 7(5):578–585

    PubMed  CAS  Google Scholar 

  • Trojer P et al (2007) L3MBTL1, a histone-methylation-dependent chromatin lock. Cell 129(5):915–928

    PubMed  CAS  Google Scholar 

  • Tsai WW et al (2010) TRIM24 links a non-canonical histone signature to breast cancer. Nature 468(7326):927–932

    PubMed  CAS  Google Scholar 

  • Tsukada Y et al (2006) Histone demethylation by a family of JmjC domain-containing proteins. Nature 439(7078):811–816

    PubMed  CAS  Google Scholar 

  • Turner BM (2005) Reading signals on the nucleosome with a new nomenclature for modified histones. Nat Struct Mol Biol 12(2):110–112

    PubMed  CAS  Google Scholar 

  • Van Aller GS et al (2012) Smyd3 regulates cancer cell phenotypes and catalyzes histone H4 lysine 5 methylation. Epigenetics 7(4):340–343

    PubMed  Google Scholar 

  • van Haaften G et al (2009) Somatic mutations of the histone H3K27 demethylase gene UTX in human cancer. Nat Genet 41(5):521–523

    PubMed  Google Scholar 

  • van Leeuwen F, Gafken PR, Gottschling DE (2002) Dot1p modulates silencing in yeast by methylation of the nucleosome core. Cell 109(6):745–756

    PubMed  Google Scholar 

  • Varambally S et al (2002) The polycomb group protein EZH2 is involved in progression of prostate cancer. Nature 419(6907):624–629

    PubMed  CAS  Google Scholar 

  • Varela I et al (2011) Exome sequencing identifies frequent mutation of the SWI/SNF complex gene PBRM1 in renal carcinoma. Nature 469(7331):539–542

    PubMed  CAS  Google Scholar 

  • Varier RA, Timmers HT (2011) Histone lysine methylation and demethylation pathways in cancer. Biochim Biophys Acta 1815(1):75–89

    PubMed  CAS  Google Scholar 

  • Vermeulen M, Timmers HT (2010) Grasping trimethylation of histone H3 at lysine 4. Epigenomics 2(3):395–406

    PubMed  CAS  Google Scholar 

  • Vermeulen M et al (2007) Selective anchoring of TFIID to nucleosomes by trimethylation of histone H3 lysine 4. Cell 131(1):58–69

    PubMed  CAS  Google Scholar 

  • Vermeulen M et al (2010) Quantitative interaction proteomics and genome-wide profiling of epigenetic histone marks and their readers. Cell 142(6):967–980

    PubMed  CAS  Google Scholar 

  • Villasenor J, Benoist C, Mathis D (2005) AIRE and APECED: molecular insights into an autoimmune disease. Immunol Rev 204:156–164

    PubMed  CAS  Google Scholar 

  • Wagner EJ, Carpenter PB (2012) Understanding the language of Lys36 methylation at histone H3. Nat Rev Mol Cell Biol 13(2):115–126

    PubMed  CAS  Google Scholar 

  • Wang GG et al (2007) NUP98-NSD1 links H3K36 methylation to Hox-A gene activation and leukaemogenesis. Nat Cell Biol 9(7):804–812

    PubMed  CAS  Google Scholar 

  • Wang GG et al (2009) Haematopoietic malignancies caused by dysregulation of a chromatin-binding PHD finger. Nature 459(7248):847–851

    PubMed  CAS  Google Scholar 

  • Webby CJ et al (2009) Jmjd6 catalyses lysyl-hydroxylation of U2AF65, a protein associated with RNA splicing. Science 325(5936):90–93

    PubMed  CAS  Google Scholar 

  • Whetstine JR et al (2006) Reversal of histone lysine trimethylation by the JMJD2 family of histone demethylases. Cell 125(3):467–481

    PubMed  CAS  Google Scholar 

  • Whyte WA et al (2012) Enhancer decommissioning by LSD1 during embryonic stem cell differentiation. Nature 482(7384):221–225

    PubMed  CAS  Google Scholar 

  • Wu S, Rice JC (2011) A new regulator of the cell cycle: the PR-Set7 histone methyltransferase. Cell Cycle 10(1):68–72

    PubMed  CAS  Google Scholar 

  • Wu S et al (2010) Dynamic regulation of the PR-Set7 histone methyltransferase is required for normal cell cycle progression. Genes Dev 24(22):2531–2542

    PubMed  CAS  Google Scholar 

  • Wu G et al (2012) Somatic histone H3 alterations in pediatric diffuse intrinsic pontine gliomas and non-brainstem glioblastomas. Nat Genet 44(3):251–253

    PubMed  CAS  Google Scholar 

  • Wysocka J et al (2006) A PHD finger of NURF couples histone H3 lysine 4 trimethylation with chromatin remodelling. Nature 442(7098):86–90

    PubMed  CAS  Google Scholar 

  • Xu S et al (2011a) Structural and biochemical studies of human lysine methyltransferase Smyd3 reveal the important functional roles of its post-SET and TPR domains and the regulation of its activity by DNA binding. Nucleic Acids Res 39(10):4438–4449

    PubMed  CAS  Google Scholar 

  • Xu S et al (2011b) Structure of human lysine methyltransferase Smyd2 reveals insights into the substrate divergence in Smyd proteins. J Mol Cell Biol 3(5):293–300

    PubMed  CAS  Google Scholar 

  • Yamane K et al (2006) JHDM2A, a JmjC-containing H3K9 demethylase, facilitates transcription activation by androgen receptor. Cell 125(3):483–495

    PubMed  CAS  Google Scholar 

  • Yang L et al (2002) Molecular cloning of ESET, a novel histone H3-specific methyltransferase that interacts with ERG transcription factor. Oncogene 21(1):148–152

    PubMed  CAS  Google Scholar 

  • Yang H et al (2008) Preferential dimethylation of histone H4 lysine 20 by Suv4-20. J Biol Chem 283(18):12085–12092

    PubMed  CAS  Google Scholar 

  • Yang Y et al (2010) TDRD3 is an effector molecule for arginine-methylated histone marks. Mol Cell 40(6):1016–1023

    PubMed  CAS  Google Scholar 

  • Yap DB et al (2011) Somatic mutations at EZH2 Y641 act dominantly through a mechanism of selectively altered PRC2 catalytic activity, to increase H3K27 trimethylation. Blood 117(8): 2451–2459

    PubMed  CAS  Google Scholar 

  • Yokoyama A et al (2004) Leukemia proto-oncoprotein MLL forms a SET1-like histone methyltransferase complex with menin to regulate Hox gene expression. Mol Cell Biol 24(13): 5639–5649

    PubMed  CAS  Google Scholar 

  • Yu J et al (2007) A polycomb repression signature in metastatic prostate cancer predicts cancer outcome. Cancer Res 67(22):10657–10663

    PubMed  CAS  Google Scholar 

  • Yun M et al (2011) Readers of histone modifications. Cell Res 21(4):564–578

    PubMed  CAS  Google Scholar 

  • Zee BM, Young NL, Garcia BA (2011) Quantitative proteomic approaches to studying histone modifications. Curr Chem Genomics 5(Suppl 1):106–114

    PubMed  CAS  Google Scholar 

  • Zhang J et al (2012) The genetic basis of early T-cell precursor acute lymphoblastic leukaemia. Nature 481(7380):157–163

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Mark Bedford for providing critical advice and members of the Gozani and Shi labs for critical reading of the work. This work was supported in part by grants from the NIH to O. Gozani (R01 GM079641, R01CA172560) and to Y. Shi (RO1CA118487, RO1MH096006). O. Gozani and Y. Shi are recipients of an Ellison Senior Scholar in Aging Award. Y. Shi is an American Cancer Society Research Professor.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Or Gozani or Yang Shi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Gozani, O., Shi, Y. (2014). Histone Methylation in Chromatin Signaling. In: Workman, J., Abmayr, S. (eds) Fundamentals of Chromatin. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8624-4_5

Download citation

Publish with us

Policies and ethics