Skip to main content

Long Non-coding RNAs and Nuclear Body Formation and Function

  • Chapter
  • First Online:
Molecular Biology of Long Non-coding RNAs

Abstract

A significant challenge facing biologists of our era is determining a function for the thousands of long noncoding RNAs transcribed from the genomes of complex organisms. One area that has been highly influential in this regard is nuclear organization, as it has emerged that one of the best-studied roles of long noncoding RNAs (lncRNAs) is to form subnuclear structures and/or influence their function. Essentially, there are two types of lncRNA in nuclear organization: lncRNAs that form subnuclear bodies as essential structural scaffolds (for example, NEAT1 in paraspeckles, Satellite III (SatIII) lncRNA transcripts in nuclear stress bodies (nSBs), hsr-ω-n in omega speckles in Drosophila, and MIAT in gomafu speckles), and lncRNAs that are localized to subnuclear bodies, but are not known to be crucial for their formation (for example, MALAT1 in nuclear speckles and TUG1 in polycomb bodies). Studies on these nuclear lncRNAs have led to a wealth of insights into the way lncRNAs nucleate subnuclear bodies, their interacting protein partners and their spatial organization. Importantly, functions have also been elucidated, with a common theme emerging that lncRNA associated subnuclear bodies influence gene expression at both the transcriptional and posttranscriptional levels. Our current knowledge may well represent just the tip of the iceberg in terms of the actual numbers of lncRNAs involved in nuclear organization, and the types of functions they may have in controlling gene expression.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Barry, G., Briggs, J., Vanichkina, D., Poth, E., Beveridge, N., Ratnu, V., et al. (2013). The long noncoding RNA Gomafu is acutely regulated in response to neuronal activation and involved in schizophrenia-associated alternative splicing. Molecular Psychiatry,. doi:10.1038/mp.2013.45.

    PubMed  Google Scholar 

  • Bendena, W. G., Garbe, J. C., Traverse, K. L., Lakhotia, S. C., & Pardue, M. L. (1989). Multiple inducers of the Drosophila heat shock locus 93D (hsr omega): Inducer-specific patterns of the three transcripts. The Journal of Cell Biology, 108, 2017–2028.

    Article  PubMed  CAS  Google Scholar 

  • Bendena, W. G., Ayme-Southgate, A., Garbe, J. C., & Pardue, M. L. (1991). Expression of heat-shock locus hsr-omega in nonstressed cells during development in Drosophila melanogaster. Developmental Biology, 144, 65–77.

    Article  PubMed  CAS  Google Scholar 

  • Bernard, D., Prasanth, K. V., Tripathi, V., Colasse, S., Nakamura, T., Xuan, Z. Y., et al. (2010). A long nuclear-retained noncoding RNA regulates synaptogenesis by modulating gene expression. The EMBO Journal, 29, 3082–3093.

    Article  PubMed  CAS  Google Scholar 

  • Biamonti, G., & Caceres, J. F. (2009). Cellular stress and RNA splicing. Trends in Biochemical Sciences, 34, 146–153.

    Article  PubMed  CAS  Google Scholar 

  • Biamonti, G., & Vourc’h, C. 2010. Nuclear stress bodies. Cold Spring Harbor Perspectives in Biology, 2, a000695.

    Google Scholar 

  • Blackshaw, S., Harpavat, S., Trimarchi, J., Cai, L., Huang, H. Y., Kuo, W. P., et al. (2004). Genomic analysis of mouse retinal development. PLoS Biology, 2, 1411–1431.

    Article  CAS  Google Scholar 

  • Bond, C. S., & Fox, A. H. (2009). Paraspeckles: Nuclear bodies built on long noncoding RNA. The Journal of Cell Biology, 186, 637–644.

    Article  PubMed  CAS  Google Scholar 

  • Buchenau, P., Saumweber, H., & Arndt-Jovin, D. J. (1997). The dynamic nuclear redistribution of an hnRNP K-homologous protein during Drosophila embryo development and heat shock. Flexibility of transcription sites in vivo. The Journal of Cell Biology, 137, 291–303.

    Article  PubMed  CAS  Google Scholar 

  • Capshew, C. R., Dusenbury, K. L., & Hundley, H. A. (2012). Inverted Alu dsRNA structures do not affect localization but can alter translation efficiency of human mRNAs independent of RNA editing. Nucleic Acids Research, 40, 8637–8645.

    Article  PubMed  CAS  Google Scholar 

  • Chen, L.-L., & Carmichael, G. G. (2009). Altered nuclear retention of mRNAs containing inverted repeats in human embryonic stem cells: Functional role of a nuclear noncoding RNA. Molecular Cell, 35, 467–478.

    Article  PubMed  CAS  Google Scholar 

  • Chiodi, I., Biggiogera, M., Denegri, M., Corioni, M., Weighardt, F., Cobianchi, F., et al. (2000). Structure and dynamics of hnRNP-labelled nuclear bodies induced by stress treatments. Journal of Cell Science, 113, 4043–4053.

    PubMed  CAS  Google Scholar 

  • Clemson, C. M., Hutchinson, J. N., Sara, S. A., Ensminger, A. W., Fox, A. H., Chess, A., et al. (2009). An architectural role for a nuclear noncoding RNA: NEAT1 RNA is essential for the structure of paraspeckles. Molecular Cell, 33, 717–726.

    Article  PubMed  CAS  Google Scholar 

  • Dangli, A., & Bautz, E. F. (1983). Differential distribution of nonhistone proteins from polytene chromosomes of Drosophila melanogaster after heat shock. Chromosoma, 88, 201–207.

    Article  PubMed  CAS  Google Scholar 

  • Dangli, A., Grond, C., Kloetzel, P., & Bautz, E. F. (1983). Heat-shock puff 93 D from Drosophila melanogaster: Accumulation of a RNP-specific antigen associated with giant particles of possible storage function. The EMBO Journal, 2, 1747–1751.

    PubMed  CAS  Google Scholar 

  • Denegri, M., Chiodi, I., Corioni, M., Cobianchi, F., Riva, S., & Biamonti, G. (2001). Stress-induced nuclear bodies are sites of accumulation of pre-mRNA processing factors. Molecular Biology of the Cell, 12, 3502–3514.

    Article  PubMed  CAS  Google Scholar 

  • Denegri, M., Moralli, D., Rocchi, M., Biggiogera, M., Raimondi, E., Cobianchi, F., et al. (2002). Human chromosomes 9, 12, and 15 contain the nucleation sites of stress-induced nuclear bodies. Molecular Biology of the Cell, 13, 2069–2079.

    Article  PubMed  CAS  Google Scholar 

  • Dundr, M., & Misteli, T. 2010. Biogenesis of nuclear bodies. Cold Spring Harbor Perspectives in Biology, 2, a000711.

    Google Scholar 

  • Dye, B. T., & Patton, J. G. (2001). An RNA recognition motif (RRM) is required for the localization of PTB-associated splicing factor (PSF) to subnuclear speckles. Experimental Cell Research, 263, 131–144.

    Article  PubMed  CAS  Google Scholar 

  • Eissmann, M., Gutschner, T., Hammerle, M., Gunther, S., Caudron-Herger, M., Gross, M., et al. (2012). Loss of the abundant nuclear noncoding RNA MALAT1 is compatible with life and development. RNA Biology, 9, 1076–1087.

    Article  PubMed  CAS  Google Scholar 

  • Fitzpatrick, T., & Huang, S. (2012). 3′-UTR-located inverted Alu repeats facilitate mRNA translational repression and stress granule accumulation. Nucleus, 3, 359–369.

    Article  PubMed  Google Scholar 

  • Fox, A. H., Lam, Y. W., Leung, A. K. L., Lyon, C. E., Andersen, J., Mann, M., et al. (2002). Paraspeckles: A novel nuclear domain. Current Biology, 12, 13–25.

    Article  PubMed  CAS  Google Scholar 

  • Fox, A. H., Bond, C. S., & Lamond, A. I. (2005). P54nrb forms a heterodimer with PSP1 that localizes to paraspeckles in an RNA-dependent manner. Molecular Biology of the Cell, 16, 5304–5315.

    Article  PubMed  CAS  Google Scholar 

  • Fritah, S., Col, E., Boyault, C., Govin, J., Sadoul, K., Chiocca, S., et al. (2009). Heat-shock factor 1 controls genome-wide acetylation in heat-shocked cells. Molecular Biology of the Cell, 20, 4976–4984.

    Article  PubMed  CAS  Google Scholar 

  • Garbe, J. C., Bendena, W. G., Alfano, M., & Pardue, M. L. (1986). A Drosophila heat shock locus with a rapidly diverging sequence but a conserved structure. Journal of Biological Chemistry, 261, 16889–16894.

    PubMed  CAS  Google Scholar 

  • Gibb, E. A., Vucic, E. A., Enfield, K. S. S., Stewart, G. L., Lonergan, K. M., Kennett, J. Y., et al. (2011). Human cancer long noncoding RNA transcriptomes. PLoS ONE, 6, e25915.

    Article  PubMed  CAS  Google Scholar 

  • Gupta, R. A., Shah, N., Wang, K. C., Kim, J., Horlings, H. M., Wong, D. J., et al. (2010). Long noncoding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature, 464, 1071–1076.

    Article  Google Scholar 

  • Gutschner, T., Hammerle, M., Eissmann, M., Hsu, J., Kim, Y., Hung, G., et al. (2013). The noncoding RNA MALAT1 is a critical regulator of the metastasis phenotype of lung cancer cells. Cancer Research, 73, 1180–1189.

    Article  PubMed  CAS  Google Scholar 

  • Hogan, N. C., Slot, F., Traverse, K. L., Garbe, J. C., Bendena, W. G., & Pardue, M. L. (1995). Stability of tandem repeats in the Drosophila melanogaster Hsr-omega nuclear RNA. Genetics, 139, 1611–1621.

    PubMed  CAS  Google Scholar 

  • Hovemann, B. T., Dessen, E., Mechler, H., & Mack, E. (1991). Drosophila snRNP associated protein P11 which specifically binds to heat shock puff 93D reveals strong homology with hnRNP core protein A1. Nucleic Acids Research, 19, 4909–4914.

    Article  PubMed  CAS  Google Scholar 

  • Hutchinson, J., Ensminger, A., Clemson, C., Lynch, C., Lawrence, J., & Chess, A. (2007). A screen for nuclear transcripts identifies two linked noncoding RNAs associated with SC35 splicing domains. BMC Genomics, 8, 39.

    Article  PubMed  Google Scholar 

  • Ishii, N., Ozaki, K., Sato, H., Mizuno, H., Saito, S., Takahashi, A., et al. (2006). Identification of a novel noncoding RNA, MIAT, that confers risk of myocardial infarction. Journal of Human Genetics, 51, 1087–1099.

    Article  PubMed  CAS  Google Scholar 

  • Jarmuż, M., Glotzbach, C. D., Bailey, K. A., Bandyopadhyay, R., & Shaffer, L. G. (2007). The evolution of satellite III DNA subfamilies among primates. The American Journal of Human Genetics, 80, 495–501.

    Article  Google Scholar 

  • Jolly, C., Morimoto, R., Robert-Nicoud, M., & Vourc’h, C. (1997). HSF1 transcription factor concentrates in nuclear foci during heat shock: Relationship with transcription sites. Journal of Cell Science, 110, 2935–2941.

    PubMed  CAS  Google Scholar 

  • Jolly, C., Konecny, L., Grady, D. L., Kutskova, Y. A., Cotto, J. J., Morimoto, R. I., et al. (2002). In vivo binding of active heat shock transcription factor 1 to human chromosome 9 heterochromatin during stress. The Journal of Cell Biology, 156, 775–781.

    Article  PubMed  CAS  Google Scholar 

  • Jolly, C., Metz, A., Govin, J., Vigneron, M., Turner, B. M., Khochbin, S., et al. (2004). Stress-induced transcription of satellite III repeats. The Journal of Cell Biology, 164, 25–33.

    Article  PubMed  CAS  Google Scholar 

  • Jolly, C., & Lakhotia, S. C. (2006). Human sat III and Drosophila hsrω transcripts: A common paradigm for regulation of nuclear RNA processing in stressed cells. Nucleic Acids Research, 34, 5508–5514.

    Article  PubMed  CAS  Google Scholar 

  • Khalil, A. M., Guttman, M., Huarte, M., Garber, M., Raj, A., Rivea Morales, D., et al. (2009). Many human large intergenic noncoding RNAs associate with chromatin-modifying complexes and affect gene expression. Proceedings of the National Academy of Sciences of the United States of America, 106, 11667–11672.

    Article  PubMed  CAS  Google Scholar 

  • Kogo, R., Shimamura, T., Mimori, K., Kawahara, K., Imoto, S., Sudo, T., et al. (2011). Long noncoding RNA HOTAIR regulates polycomb-dependent chromatin modification and is associated with poor prognosis in colorectal cancers. Cancer Research, 71, 6320–6326.

    Article  PubMed  CAS  Google Scholar 

  • Lakhotia, S. C., & Sharma, A. (1995). RNA metabolismin situ at the 93D heat shock locus in polytene nuclei of Drosophila melanogaster after various treatments. Chromosome Research, 3, 151–161.

    Article  PubMed  CAS  Google Scholar 

  • Lakhotia, S. C., Ray, P., & Rajendra, T. K. (1999). The noncoding transcripts of hsr-omega gene in Drosophila: Do they regulate trafficking and availability of nuclear RNA-processing factors? Current Science, 77, 553–563.

    CAS  Google Scholar 

  • Li, L., Feng, T. T., Lian, Y. Y., Zhang, G. F., Garen, A., & Song, X. (2009). Role of human noncoding RNAs in the control of tumorigenesis. Proceedings of the National Academy of Sciences of the United States of America, 106, 12956–12961.

    Article  PubMed  CAS  Google Scholar 

  • Lin, R., Roychowdhury-Saha, M., Black, C., Watt, A. T., Marcusson, E. G., Freier, S. M., et al. (2011). Control of RNA processing by a large noncoding RNA over-expressed in carcinomas. FEBS Letters, 585, 671–676.

    Article  PubMed  CAS  Google Scholar 

  • Lindquist, S. (1986). The heat-shock response. Annual Review of Biochemistry, 55, 1151–1191.

    Article  PubMed  CAS  Google Scholar 

  • Mähl, P., Lutz, Y., Puvion, E., & Fuchs, J. P. (1989). Rapid effect of heat shock on two heterogeneous nuclear ribonucleoprotein-associated antigens in HeLa cells. The Journal of Cell Biology, 109, 1921–1935.

    Article  PubMed  Google Scholar 

  • Mallik, M., & Lakhotia, S. C. (2009). RNAi for the large noncoding hsrω transcripts suppresses polyglutamine pathogenesis in Drosophila models. RNA Biology, 6, 464–478.

    Article  PubMed  CAS  Google Scholar 

  • Mao, Y. S., Sunwoo, H., Zhang, B., & Spector, D. L. (2011). Direct visualization of the co-transcriptional assembly of a nuclear body by noncoding RNAs. Nature Cell Biology, 13, 95–101.

    Article  PubMed  CAS  Google Scholar 

  • Metz, A., Soret, J., Vourc’h, C., Tazi, J., & Jolly, C. (2004). A key role for stress-induced satellite III transcripts in the relocalization of splicing factors into nuclear stress granules. Journal of Cell Science, 117, 4551–4558.

    Article  PubMed  CAS  Google Scholar 

  • Mintz, P. J. (1999). Purification and biochemical characterization of interchromatin granule clusters. The EMBO Journal, 18, 4308–4320.

    Article  PubMed  CAS  Google Scholar 

  • Misteli, T., Cáceres, J. F., & Spector, D. L. (1997). The dynamics of a pre-mRNA splicing factor in living cells. Nature, 387, 523–527.

    Article  PubMed  CAS  Google Scholar 

  • Misteli, T. (1998). Serine phosphorylation of SR proteins is required for their recruitment to sites of transcription in vivo. The Journal of cell biology, 143, 297–307.

    Article  PubMed  CAS  Google Scholar 

  • Miyagawa, R., Tano, K., Mizuno, R., Nakamura, Y., Ijiri, K., Rakwal, R., et al. (2012). Identification of cis- and trans-acting factors involved in the localization of MALAT-1 noncoding RNA to nuclear speckles. RNA, 18, 738–751.

    Article  PubMed  CAS  Google Scholar 

  • Mutsuddi, M., & Lakhotia, S. C. (1995). Spatial expression of the hsr-omega (93D) gene in different tissues of Drosophila melanogaster and identification of promoter elements controlling its developmental expression. Developmental Genetics, 17, 303–311.

    Article  PubMed  CAS  Google Scholar 

  • Naganuma, T., Nakagawa, S., Tanigawa, A., Sasaki, Y. F., Goshima, N., & Hirose, T. (2012). Alternative 3′-end processing of long noncoding RNA initiates construction of nuclear paraspeckles. The EMBO Journal, 31, 4020–4034.

    Article  PubMed  CAS  Google Scholar 

  • Nakagawa, S., Naganuma, T., Shioi, G., & Hirose, T. (2011). Paraspeckles are subpopulation-specific nuclear bodies that are not essential in mice. The Journal of Cell Biology, 193, 31–39.

    Article  PubMed  CAS  Google Scholar 

  • Nakagawa, S., & Hirose, T. (2012). Paraspeckle nuclear bodies—useful uselessness? Cellular and Molecular Life Sciences, 69, 3027–3036.

    Article  PubMed  CAS  Google Scholar 

  • Nakagawa, S., Ip, J. Y., Shioi, G., Tripathi, V., Zong, X., & Bosserhoff, A. K. (2012). Malat1 is not an essential component of nuclear speckles in mice. RNA, 18, 1487–1499.

    Article  PubMed  CAS  Google Scholar 

  • Passon, D. M., Lee, M., Rackham, O., Stanley, W. A., Sadowska, A., Filipovska, A., et al. (2012). Structure of the heterodimer of human NONO and paraspeckle protein component 1 and analysis of its role in subnuclear body formation. Proceedings of the National Academy of Sciences of the United States of America, 109, 4846–4850.

    Article  PubMed  CAS  Google Scholar 

  • Pirrotta, V., & Li, H.-B. (2012). A view of nuclear Polycomb bodies. Current Opinion in Genetics & Development, 22, 101–109.

    Article  CAS  Google Scholar 

  • Prasanth, K. V., Rajendra, T. K., Lal, A. K., & Lakhotia, S. C. (2000). Omega speckles—a novel class of nuclear speckles containing hnRNPs associated with noncoding hsr-omega RNA in Drosophila. Journal of Cell Science, 113, 3485–3497.

    PubMed  CAS  Google Scholar 

  • Prasanth, K. V., Prasanth, S. G., Xuan, Z., Hearn, S., Freier, S. M., Bennett, C. F., et al. (2005). Regulating gene expression through RNA nuclear retention. Cell, 123, 249–263.

    Article  PubMed  CAS  Google Scholar 

  • Rajendra, T. K., Prasanth, K. V., & Lakhotia, S. C. (2001). Male sterility associated with overexpression of the noncoding hsrω gene in cyst cells of testis of Drosophila melanogaster. Journal of Genetics, 80, 97–110.

    Article  PubMed  CAS  Google Scholar 

  • Rizzi, N., Denegri, M., Chiodi, I., Corioni, M., Valgardsdottir, R., Cobianchi, F., et al. (2004). Transcriptional activation of a constitutive heterochromatic domain of the human genome in response to heat shock. Molecular Biology of the Cell, 15, 543–551.

    Article  PubMed  CAS  Google Scholar 

  • Ryseck, R.-P., Walldorf, U., Hoffmann, T., & Hovemann, B. (1987). Heat shock loci 93D of Drosophila melanogaster and 48B of Drosophila hydei exhibit a common structural and transcriptional pattern. Nucleic Acids Research, 15, 3317–3333.

    Article  PubMed  CAS  Google Scholar 

  • Samuels, M. E., Bopp, D., Colvin, R. A., Roscigno, R. F., Garcia-Blanco, M. A., & Schedl, P. (1994). RNA binding by Sxl proteins in vitro and in vivo. Molecular and Cellular Biology, 14, 4975–4990.

    PubMed  CAS  Google Scholar 

  • Sarge, K. D., Murphy, S. P., & Morimoto, R. I. (1993). Activation of heat shock gene transcription by heat shock factor 1 involves oligomerization, acquisition of DNA-binding activity, and nuclear localization and can occur in the absence of stress. Molecular and Cellular Biology, 13, 1392–1407.

    PubMed  CAS  Google Scholar 

  • Sasaki, Y. T. F., Ideue, T., Sano, M., Mituyama, T., & Hirose, T. (2009). MENε/β noncoding RNAs are essential for structural integrity of nuclear paraspeckles. Proceedings of the National Academy of Sciences of the United States of America, 106, 2525–2530.

    Article  PubMed  CAS  Google Scholar 

  • Sengupta, S., & Lakhotia, S. C. (2006). Altered Expression of the noncoding hsrω Gene Enhances poly-Q Induced Neurotoxicity in Drosophila. RNA Biology, 3, 28–35.

    Article  PubMed  CAS  Google Scholar 

  • Shevtsov, S. P., & Dundr, M. (2011). Nucleation of nuclear bodies by RNA. Nature Cell Biology, 13, 167–173.

    Article  PubMed  CAS  Google Scholar 

  • Sone, M., Hayashi, T., Tarui, H., Agata, K., Takeichi, M., & Nakagawa, S. (2007). The mRNA-like noncoding RNA Gomafu constitutes a novel nuclear domain in a subset of neurons. Journal of Cell Science, 120, 2498–2506.

    Article  PubMed  CAS  Google Scholar 

  • Souquere, S., Beauclair, G., Harper, F., Fox, A., & Pierron, G. (2010). Highly ordered spatial organization of the structural long noncoding NEAT1 RNAs within paraspeckle nuclear bodies. Molecular Biology of the Cell, 21, 4020–4027.

    Article  PubMed  CAS  Google Scholar 

  • Spector, D. L., & Lamond, A. I. 2011. Nuclear speckles. Cold Spring Harbor Perspectives in Biology, 3, a000646.

    Google Scholar 

  • Sreenivasa Murthy, U. M., & Rangarajan, P. N. (2010). Identification of protein interaction regions of VINC/NEAT1/Men epsilon RNA. FEBS Letters, 584, 1531–1535.

    Article  CAS  Google Scholar 

  • Sunwoo, H., Dinger, M. E., Wilusz, J. E., Amaral, P. P., Mattick, J. S., & Spector, D. L. (2009). MEN ε/β nuclear-retained noncoding RNAs are up-regulated upon muscle differentiation and are essential components of paraspeckles. Genome Research, 19, 347–359.

    Article  PubMed  CAS  Google Scholar 

  • Takayama, K., Horie-Inoue, K., Katayama, S., Suzuki, T., Tsutsumi, S., Ikeda, K., et al. (2013). Androgen-responsive long noncoding RNA CTBP1-AS promotes prostate cancer. The EMBO Journal, 32, 1665–1680.

    Article  PubMed  CAS  Google Scholar 

  • Tapadia, M. G., & Lakhotia, S. C. (1997). Specific induction of the hsrω locus of Drosophila melanogaster by amides. Chromosome Research, 5, 359–362.

    Article  PubMed  CAS  Google Scholar 

  • Thiry, M. (1995). Nucleic acid compartmentalization within the cell nucleus by in situ transferase-immunogold techniques. Microscopy Research and Technique, 31, 4–21.

    Article  PubMed  CAS  Google Scholar 

  • Tripathi, V., Ellis, J. D., Shen, Z., Song, D. Y., Pan, Q., Watt, A. T., et al. (2010). The nuclear-retained noncoding RNA MALAT1 regulates alternative splicing by modulating SR splicing factor phosphorylation. Molecular Cell, 39, 925–938.

    Article  PubMed  CAS  Google Scholar 

  • Tripathi, V., Shen, Z., Chakraborty, A., Giri, S., Freier, S. M., Wu, X. L., et al. 2013. Long noncoding RNA MALAT1 controls cell cycle progression by regulating the expression of oncogenic transcription factor B-MYB. PLoS Genetics, 9, e1003368.

    Google Scholar 

  • Tsai, M. C., Manor, O., Wan, Y., Mosammaparast, N., Wang, J. K., Lan, F., et al. (2010). Long noncoding RNA as modular scaffold of histone modification complexes. Science, 329, 689–693.

    Article  PubMed  CAS  Google Scholar 

  • Tsuiji, H., Yoshimoto, R., Hasegawa, Y., Furuno, M., Yoshida, M., & Nakagawa, S. (2011). Competition between a noncoding exon and introns: Gomafu contains tandem UACUAAC repeats and associates with splicing factor-1. Genes to Cells, 16, 479–490.

    Article  PubMed  CAS  Google Scholar 

  • Valgardsdottir, R., Chiodi, I., Giordano, M., Cobianchi, F., Riva, S., & Biamonti, G. (2005). Structural and functional characterization of noncoding repetitive RNAs transcribed in stressed human cells. Molecular Biology of the Cell, 16, 2597–2604.

    Article  PubMed  CAS  Google Scholar 

  • Visa, N., Puvion-Dutilleul, F., Bachellerie, J. P., & Puvion, E. 1993. Intranuclear distribution of U1 and U2 snRNAs visualized by high resolution in situ hybridization: Revelation of a novel compartment containing U1 but not U2 snRNA in HeLa cells. The European Journal of Cell Biology, 60, 308–321.

    Google Scholar 

  • Wang, K. C., & Chang, H. Y. (2011). Molecular mechanisms of long noncoding RNAs. Molecular Cell, 43, 904–914.

    Article  PubMed  CAS  Google Scholar 

  • Weighardt, F., Cobianchi, F., Cartegni, L., Chiodi, I., Villa, A., Riva, S., et al. (1999). A novel hnRNP protein (HAP/SAF-B) enters a subset of hnRNP complexes and relocates in nuclear granules in response to heat shock. Journal of Cell Science, 112, 1465–1476.

    PubMed  CAS  Google Scholar 

  • Wu, C.-F., Tan, G.-H., Ma, C.-C., & Li, L. (2013). The noncoding RNA llme23 drives the malignant property of human melanoma cells. Journal of Genetics and Genomics, 40, 179–188.

    Article  PubMed  Google Scholar 

  • Yang, L., Lin, C., Liu, W., Zhang, J., Ohgi, K. A., Grinstein, J. D., et al. (2011). ncRNA- and Pc2 methylation-dependent gene relocation between nuclear structures mediates gene activation programs. Cell, 147, 773–788.

    Article  PubMed  CAS  Google Scholar 

  • Young, T. L., Matsuda, T., & Cepko, C. L. (2005). The noncoding RNA taurine upregulated gene 1 is required for differentiation of the murine retina. Current Biology, 15, 501–512.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, G., Taneja, K. L., & Singer, R. H. (1994). Localization of pre-mRNA splicing in mammalian nuclei. Nature, 372, 809–812.

    PubMed  CAS  Google Scholar 

  • Zhang, Z., & Carmichael, G. G. (2001). The fate of dsRNA in the nucleus: A p54nrb-containing complex mediates the nuclear retention of promiscuously A-to-I edited RNAs. Cell, 106, 465–476.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, B., Arun, G., Mao, Y. S., Lazar, Z., Hung, G. N., Bhattacharjee, G., et al. (2012). The lncRNA Malat1 is dispensable for mouse development but its transcription plays a cis-regulatory role in the adult. Cell Reports, 2, 111–123.

    Article  PubMed  CAS  Google Scholar 

  • Zimowska, G., & Paddy, M. R. (2002). Structures and dynamics of Drosophila Tpr inconsistent with a static, filamentous structure. Experimental Cell Research, 276, 223–232.

    Article  PubMed  CAS  Google Scholar 

  • Zu, K., Sikes, M. L., & Beyer, A. L. (1998). Separable roles in vivo for the two RNA binding domains of Drosophila A1-hnRNP homolog. RNA, 4, 1585–1598.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Archa H. Fox .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Fortini, E., Li, R., Fox, A.H. (2013). Long Non-coding RNAs and Nuclear Body Formation and Function. In: Khalil, A., Coller, J. (eds) Molecular Biology of Long Non-coding RNAs. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8621-3_8

Download citation

Publish with us

Policies and ethics