Skip to main content

The IQ Imbalance Model

  • Chapter
  • First Online:
In-Phase and Quadrature Imbalance

Part of the book series: SpringerBriefs in Electrical and Computer Engineering ((BRIEFSELECTRIC))

  • 1271 Accesses

Abstract

Both analog In-phase and Quadrature (IQ) modulator and demodulator may introduce IQ imbalance. If it is left uncompensated, the system performance will be impaired. In this chapter, we first derive the IQ imbalance model without any other impairments. Then, we consider the IQ imbalance model in presence of frequency offset and phase noise. After that, we consider the IQ imbalance model in multiple antenna systems, firstly space-time or space-frequency encoded systems, then spatial multiplexing systems. At the end, we show the signal-to-interference ratio (SIR) degradation due to the IQ imbalance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    With a slight abuse of notations, here we use ξ t, 1 to denote the IQ imbalance for the first TX antennas, instead of the IQ imbalance at the first subcarrier, as is used in previous sections.

References

  1. John G. Proakis, Digital Communications, McGraw-Hill, the Fifth Edition, 2007.

    Google Scholar 

  2. B. Razavi, RF Microelectronics, Upper Saddle River, NJ: Prentice Hall, 1998.

    Google Scholar 

  3. M. Valkama, M. Renfors, and V. Koivunen, “Advanced methods for I/Q imbalance compensation in communication receivers,” IEEE Trans. Signal Process., vol. 49, no. 10. pp. 2335–2344, Oct. 2001.

    Article  Google Scholar 

  4. M. Valkama, M. Renfors, and V. Koivunen, “Compensation of frequency-selective I/Q imbalances in wideband receivers: Models and algorithms,” Proc. SPAWC 2001, Taoyuan, Taiwan, R.O.C., March 20–23,2001

    Google Scholar 

  5. A. Schuchert and R. Hasholzner, “A novel IQ imbalance compensation scheme for the receiption of OFDM signals,” IEEE Trans. Consum. Electron., vol. 47, no. 3, pp. 313–318, Aug. 2001.

    Article  Google Scholar 

  6. K. P. Pun, J. E. Franca, C. Azeredo-Leme, C. F. Chan and C. S. Choy, “Correction of frequency-dependent I/Q mismatches in quadrature receivers,” Electron. Lett., vol. 37, no. 23, pp. 1415–1417, Nov. 2001.

    Article  Google Scholar 

  7. L. Brotje, S. Vogeler, and K.-D. Kammeyer, “Estimation and correction of transmitter-caused I/Q imbalance in OFDM systems,” Proc. 7th Intl. OFDM Workshop, pp. 178–182, Sept. 2002.

    Google Scholar 

  8. W. Kirkland and K. Teo, “I/Q distortion correction for OFDM direct conversion receiver,” Electron. Lett., vol. 39, pp. 131–133, 2003.

    Article  Google Scholar 

  9. A. Tarighat, R. Bagheri, and A. H. Sayed, “Compensation schemes and performance analysis of IQ imbalances in OFDM receivers,” IEEE Trans. Signal Process., vol. 53, no. 8, pp. –3268, Aug. 2005.

    Google Scholar 

  10. A. Tarighat and A. H. Sayed, “Joint compensation of transmitter and receiver impairments in OFDM systems,” IEEE Trans. Wireless Commun. vol. 6, no. 1, pp. 240–247, Jan. 2007.

    Article  Google Scholar 

  11. J. Feigin and D. Brady, “Joint transmitter/receiver I/Q imbalance compensation for direct conversion OFDM in packet-switched multipath environments,” IEEE Trans. Signal Process., vol. 57, no. 11. pp. 4588–4593, Nov. 2009.

    Article  MathSciNet  Google Scholar 

  12. K.-Y. Sun and C.-C. Chao, “Estimation and compensation of I/Q imbalance in OFDM direct-conversion receivers,” IEEE J. Sel. Topics in Signal Process., vol. 3, no. 3, pp. 438–453, Jun. 2009.

    Article  Google Scholar 

  13. Y. Tsai, C.-P. Yen, and X. Wang, “Blind frequency-dependent I/Q imbalance compensation for direct-conversion receivers,” IEEE Trans. Wireless Commun., vol. 9, no. 6, pp. 1976–1986, Jun. 2010.

    Article  Google Scholar 

  14. C.-J. Hsu and W.-H. Sheen, “Joint calibration of transmitter and receiver impairments in direct-conversion radio architecture,” IEEE Trans. Wireless Commun., vol. 11, no. 2, pp. 832–841, Feb. 2012.

    Article  Google Scholar 

  15. S. Simoens, M. de Courville, F. Bourzeix, and P. de Champs, “New I/Q imbalance modeling and compensation in OFDM systems with frequency offset,” Proc. IEEE PIMRC 2002.

    Google Scholar 

  16. G. Xing, M. Shen, and H. Liu, “Frequency offset and I/Q imbalance compensation for direct-conversion receivers,” IEEE Trans. Wireless Commun., vol. 4, no. 2, pp. 673–680, Mar. 2005.

    Article  Google Scholar 

  17. D. Tandur and M. Moonen, “Joint adaptive compensation of transmitter and receiver IQ imbalance under carrier frequency offset in OFDM-based systems,” IEEE Trans. Signal Process., vol. 55, no. 11, pp. 5246–5252, Nov. 2007.

    Article  MathSciNet  Google Scholar 

  18. F. Horlin, A. Bourdoux, and L. V. der Perre, “Low-complexity EM-based joint acquisition of the carrier frquency offset and IQ imbalance,” IEEE Trans. Wireless Commun., vol. 7, no. 6, pp. 2212–2220, Jun. 2008.

    Article  Google Scholar 

  19. H. Lin, X. Zhu, and K. Yamashita, “Low-complexity pilot-aided compensation for carrier frequency offset and I/Q imbalance,” IEEE Trans. Commun., vol. 58, no. 2, pp. 448–452, Feb. 2010.

    Article  Google Scholar 

  20. Y.-H. Chung and S.-M. Phoong, “Joint estimation of I/Q imbalance, CFO and channel response for MIMO OFDM systems,” IEEE Trans. Commun. vol. 58, no. 5, pp. 1485–1492, May 2010.

    Article  Google Scholar 

  21. W. Namgoong and P. Rabiei, “CLRB-archieving I/Q mismatch estimator for low-IF receiver using repetitive training sequence in the presence of CFO,” IEEE Trans. Commun., vol. 60, no. 3, pp. 706–713, Mar. 2012.

    Article  Google Scholar 

  22. Y.-C. Pan and S.-M. Phoon, “A time-domain joint estimation algorithm for CFO and I/Q imbalance in wideband direct-converstion receivers,” IEEE Trans. Wireless Commun., vol.7, no. 11, pp. 2353–2361, Nov. 2012.

    Article  Google Scholar 

  23. J. Tubbax, B. Côme, L. Van der Perre, S. Donnay, M. Engels, H. D. Man, and M. Mooen, “Compensation of IQ imbalance and phase noise in OFDM systems,” IEEE Trans. on Wireless Commun., vol. 4, no. 3, pp. 872–877, May 2005.

    Article  Google Scholar 

  24. Q. Zou, A. Tarighat, and A. H. Sayed, “Joint compensation of IQ imbalance and phase noise in OFDM wireless systems,” IEEE Trans. on Commun., vol. 57, no. 2, pp.404–414, Feb. 2009.

    Article  Google Scholar 

  25. B. Narasimhan, D. Wang, S. Narayanan, H. Minn, and N. Al-Dhahir, “Digital compensation of frequency-dependent joint Tx/Rx I/Q imbalance in OFDM systems under high mobility,” IEEE J. Sel. Topics in Signal Process. vol. 3, no. 3, pp. 405–417, Jun. 2009.

    Article  Google Scholar 

  26. B. Narasimhan, S. Narayanan, H. Minn, and N. Al-Dhahir, “Reduced-complexity baseband compensation of joint Tx/Rx I/Q imbalance in mobile MIMO-OFDM,” IEEE Trans. Wireless Commun. vol. 9, no. 5, pp. 1720–1728, May 2010.

    Article  Google Scholar 

  27. S. M. Alamouti, “A simple transmit diversity technique for wireless communications,” IEEE J. Select. Areas Commun., vol. 16, no. 8, pp. 1451–1458, Oct. 1998.

    Article  Google Scholar 

  28. V. Tarokh, N. Seshadri, and A. R. Calderbank, “Space-Time codes for high data rate wireless communication: performance criterion and code construction,” IEEE Trans. on Inform. Theory, vol.44, no. 2, pp. 744–765, Mar. 1998.

    Article  MathSciNet  MATH  Google Scholar 

  29. V. Tarokh, H. Jafarkhani and A. R. Calderbank, “Space-time block codes for orthogonal designs,” IEEE Trans. on Inform. Theory, vol.45, no. 5, pp. 1456–1467, July. 1999.

    Google Scholar 

  30. Haiquan Wang and Xiang-Gen Xia, “Upper bounds of rates of complex orthogonal space-time block codes,” IEEE Trans. on Inform. Theory, vol. 49, no. 10, pp. 2788–2796, Oct. 2003.

    Article  MathSciNet  Google Scholar 

  31. A. Tarighat and A. H. Sayed, “MIMO OFDM receivers for systems with IQ imbalances,” IEEE Trans. Signal Process., vol. 53, no. 9, pp. 3583–3596, Sept. 2005.

    Article  MathSciNet  Google Scholar 

  32. Y. Zou, M. Valkama, and M. Renfors, “Digital compensation of I/Q imbalance effects in space-time coded transmit diversity systems,” IEEE Trans. Signal Process., vol. 56, no. 6, pp. 2496–2508, Jun. 2008.

    Article  MathSciNet  Google Scholar 

  33. J. Qi and S. Aïssa, “Analysis and compensation of I/Q imbalance in MIMO transmit-receive diversity systems,” IEEE Trans. Commun., vol. 58, no. 5, pp. 1546–1556, May 2010.

    Article  Google Scholar 

  34. G. L. Foschini and M. J. Gans, “On limits of wireless communications in a fading environment when using multiple antennas”, Wireless Personal Communications, vol. 6, pp. 311–335, Mar. 1998.

    Article  Google Scholar 

  35. E. Telatar, “Capacity of multi-antenna Gaussian channels,” AT & T Bell-Labs, Tech. Rep., June. 1995.

    Google Scholar 

  36. T. Schenk, P. Smulders, and E. Fledderus, “Estimation and compensation of TX and RX IQ imbalance in OFDM-based MIMO systems,” Proc. IEEE Radio and Wireless Symposium, pp. 215–218, 2006.

    Google Scholar 

  37. H. Minn and D. Munoz, “Pilot designs for channel estimation of MIMO OFDM systems with frequency-depedent I/Q imbalances,” IEEE Trans. Commun., vol. 58, no. 8, pp. 2252–2264, Aug. 2010.

    Article  Google Scholar 

  38. J. Luo, W. Keusgen, and A. Kortke, “Preamble designs for efficient joint channel and frequency-selective I/Q-imbalance compensation in MIMO-OFDM systems,” Proc. IEEE WCNC 2010.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 The Author(s)

About this chapter

Cite this chapter

Li, Y. (2014). The IQ Imbalance Model. In: In-Phase and Quadrature Imbalance. SpringerBriefs in Electrical and Computer Engineering. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8618-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-8618-3_2

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-8617-6

  • Online ISBN: 978-1-4614-8618-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics