Skip to main content

Managing the Energy Basket in the Face of Limits

A Search for Operational Means to Sustain Energy Supply and Contain Its Environmental Impact

  • Chapter
  • First Online:
Book cover Energy Policy Modeling in the 21st Century

Part of the book series: Understanding Complex Systems ((UCS))

Abstract

Forrester’s World Dynamics model (Forrester, World Dynamics. Wright-Allen, Cambridge, 1971) and the subsequent Limits to Growth study (Meadows et al., Dynamics of Growth in a Finite World. Wright-Allen, Cambridge, 1974) led to make a pioneering statement recognizing the intertwined nature of resource use (that subsumed energy) and its environmental repercussions. Yet, policy actions pertaining to energy and environment have remained quite detached, even though the interaction between the two is now common knowledge. The Limits study made appeals for controlling population, resource use, and environmental pollution, albeit the operational policy options for achieving those ends that can be implemented through existing intervention structure (or policy space) continue to be a challenge, which this chapter attempts to address to meet the more specific objective of sustaining energy supply and environment concomitantly. It draws on a simple model suggested in Saeed (Technol. Forecast Soc. 28:311–323, 1985), which does not deal with the human activity modeled in the Limits project but with the eco-system impacted by the human activity. Thus, it incorporates the policy space needed for managing the ecosystem rather than the demand for resources, which helps to delineate the operational means to avoid the impending catastrophe predicted in the Limits study. It also explores the operational means for managing the environmental impact of energy use, the principles of which are outlined in Saeed (J. Econ. Issues 38(4):909–937, 2004). These principles call for integrating environmental restoration into the market activity. The policy issues pertaining to energy use and environmental restoration are dealt with in separate models following the problem-partitioning principles outlined in Saeed (Syst. Dynam. Rev. 8(2): 251–261, 1992).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abelson, P.H., Hammond, A.L.: The new world of materials. Science 191(4228), 683–689 (1974)

    Google Scholar 

  • Acharya, S.R., Saeed, K.: An attempt to operationalize the recommendations of the “Limits to Growth” study to sustain future of mankind. Syst. Dynam. Rev. 12(4), 281–304 (1996)

    Article  Google Scholar 

  • Bauer, R.A.: The study of policy formation: an introduction. In: Bauer, R.A., Gergen, K.J. (eds.) The Study of Policy Formation, The Free Press, London (1968)

    Google Scholar 

  • Bower, J.L.: Description decision theory from the administrative view point. In: Bauer, R.A., Gergen, K.J. (eds.) The Study of Policy Formation, The Free Press, London (1968)

    Google Scholar 

  • Boyd, R.: World dynamics, a note. Science 177(4048): 516–519 (1972)

    Article  Google Scholar 

  • Brooks, D.B., Andrews, P.W.: World Population and Mineral Resources: Counterintuitive or Not? UN Symposium on Population, Resources and Environment. United Nations, Stockholm (1973)

    Google Scholar 

  • Brooks, D.B., Andrews, P.W.: Mineral resources, economic growth, and world population. Science 185(4145), 13–19 (1974)

    Article  Google Scholar 

  • Cook, E.: Limits to exploitation of non-renewable resources. Science 191(4228), 677–682 (1976)

    Article  Google Scholar 

  • Daly, H.E.: The economics of steady state. Am. Econ. Rev. 64(2), 15–21 (1974)

    Google Scholar 

  • Forrester, J.W.: World Dynamics. Wright-Allen, Cambridge (1971)

    Google Scholar 

  • Georgescu-Roegen, N.: The Entropy Law and the Economic Process. Harvard University Press, Cambridge (1971).

    Google Scholar 

  • Hayes, B.: Balancing on a pencil point. Am. Sci. 81(6), 510–516 (1993)

    Google Scholar 

  • Herzog, H.: Scaling up carbon dioxide capture and storage: from megatons to gigatons. Energ. Econ. 33(4), 597–604 (2011)

    Article  Google Scholar 

  • Hopkins, M.S.: The loop you can’t get out of, an interview with Jay Forrester. Sloan Manage. Rev. 50(2): 9–12 (2009)

    Google Scholar 

  • Lindell, L., Porter, D.R, Salveen, D.A. (eds.): Mitigation Banking, Theory and Practice. Island, Washington (1996)

    Google Scholar 

  • Meadows, D.H., Meadows, D.L., Randers, J., Berhens III, W.W.: The Limits to Growth. Universe Books, New York (1972)

    Google Scholar 

  • Meadows, D.L., Meadows, D.H., et al.: Dynamics of Growth in a Finite World. Wright-Allen, Cambridge (1974)

    Google Scholar 

  • Meadows, D.H., Meadows, D.L., Randers, J.: Beyond the Limits. Chelsea Green, Post Mills (1992)

    Google Scholar 

  • Meadows, D.H., Meadows, D.L., Randers, J.: Limits to Growth: The 30-Year Update. Chelsea Green, Post Mills (2004)

    Google Scholar 

  • Mill, J.S.: Of the stationary state. In: Mill, J.S.: Principles of Political Economy with Some of Their Applications to Social Philosophy, book 4, chap. 6. Parker, London (1848)

    Google Scholar 

  • Miller, J.G.: The Earth as a system. Behav. Sci. 27(4), 303–322 (1982)

    Article  Google Scholar 

  • Nordhaus, W.D.: World dynamics: measurement without data. Econ. J. 83(332), 1156–1183 (1973)

    Article  Google Scholar 

  • Nordhaus, W.D.: The Efficient Use of Energy Resources. Cowels Foundation, Yale University Press, New Haven (1979)

    Google Scholar 

  • Ourisson, G.: The microbial origin of fossil fuels. Sci. Am. 251(2), 34–41 (1984)

    Article  Google Scholar 

  • Page, T.: Conservation and Economic Efficiency: An Approach To Materials Policy. Johns Hopkins University Press, Baltimore (1977)

    Google Scholar 

  • Pearce, D.W., Turner, R.K.: Economics of Natural Resources and Environment. Johns Hopkins University Press, Baltimore (1989)

    Google Scholar 

  • Rapoport, A.: Decision Theory and Decision Behavior: Normative and Descriptive Approaches. Kluwer, Norwell (1989)

    MATH  Google Scholar 

  • Ravelle, R.: Will Earth’s Land and Water Resources Be Sufficient for Future Populations? UN Symposium on Population, Natural Resources and Environment. United Nations, Stockholm (1973)

    Google Scholar 

  • Saeed, K.: An attempt to determine criteria for sensible rates of use of material resources. Technol. Forecast Soc. 28, 311–323 (1985)

    Article  Google Scholar 

  • Saeed, K.: Slicing a complex problem for system dynamics modeling. Syst. Dynam. Rev. 8(3), 251–261 (1992)

    Article  MathSciNet  Google Scholar 

  • Saeed, K.: Development Planning and Policy Design: A System Dynamics Approach. Avebury, Aldershot (1994)

    Google Scholar 

  • Saeed, K.: Sustainable development, old conundrums, new discords, Jay Wright Forrester award lecture. Syst. Dynam. Rev. 12(1), 59–80 (1996)

    Article  Google Scholar 

  • Saeed, K.: Articulating developmental problems for policy intervention: a system dynamics modeling approach. Simulat. Gaming 34(3), 409–436 (2003)

    Article  Google Scholar 

  • Saeed, K.: Designing an environmental mitigation banking institution for linking the size of economic activity to environmental capacity. J. Econ. Issues 38(4) 909–937 (2004)

    Google Scholar 

  • Solow, R.: Economics of resources or resources of economics. Am. Econ. Rev. 64(2), 1–14 (1974)

    Google Scholar 

  • Tietenberg, T.H.: Environmental and Natural Resource Economics, 6th edn. Addison Wesley, Boston (2003)

    Google Scholar 

  • Wildlandsinc.com.: Mitigation Banks. http://www.wildlandsinc.comAccessed: 20 Aug 2013

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khalid Saeed .

Editor information

Editors and Affiliations

Appendix: Model Equations

Appendix: Model Equations

Demand

exog_demand_f = (initial_expenditure)*(1 + RAMP(slope, T))

DOCUMENT: RESOURCE DEMAND SCHEDULE (EXOGENEOUS)

initial_expenditure = 10

DOCUMENT: INITIAL EXPENDITURE RATE

slope = 0.01

DOCUMENT: SLOPE OF EXOGENOUS DEMAND SCHEDULE

T = 0

DOCUMENT: TIME PARAMETER IN EXOGENOUS DEMAND SCHEDULE

Exploitable Resources

exploitable_res(t) = exploitable_res(t – dt) + (reclassification + discovery – exploitation) * dt

INIT exploitable_res = initial_expenditure*normal_exploit_delay

DOCUMENT: EXPLOITABLE RESOURCES

INFLOWS:

reclassification = spent_res*fr_reclassified*reclass_sw

DOCUMENT: RECYCLING RATE

discovery = potentially_usable_res/discovery_delay

DOCUMENT: DISCOVERY RATE

OUTFLOWS:

exploitation (IN SECTOR: usable resources)reclass_sw = 1

Potentially Usable Resources

potentially_usable_res(t) = potentially_usable_res(t − dt) + (regeneration − discovery) * dt

INIT potentially_usable_res = initial_expenditure*normal_discovery_delay

DOCUMENT: POTENTIALLY USABLE RESOURCES

INFLOWS:

regeneration = spent_res/regen_time

DOCUMENT: REGENERATION RATE

OUTFLOWS:

discovery (IN SECTOR: exploitable resources)

resource availability

availability = usable_res/desired_usable_res

DOCUMENT: RESOURCE AVAILABILITY

av_availability = SMTH1(availability, time_to_smooth_av)

DOCUMENT: AVERAGE RESOURCE AVAILABILITY

desired_usable_res = res_demand*res_coverage_time

DOCUMENT: DESIRED USABLE RESOURCES

discovery_delay = normal_discovery_delay*effect_of_av_on_discovery_relay

DOCUMENT: DISCOVERY DELAY

exploitation_delay = normal_exploit_delay*effect_of_res_av_on_expl_delay

normal_discovery_delay = 50

DOCUMENT: NORMAL DISCOVERY DELAY

normal_exploit_delay = 20

DOCUMENT: NORMAL EXPLOITATION DELAY

normal_regen_time = 10000

DOCUMENT: NORMAL REGENERATION TIME 10000

regen_time = normal_regen_time*(1-res_basket_sw) + normal_regen_time*effect_of_shortage_on_reg_time*res_basket_sw

DOCUMENT: REGENERATION TIME

res_basket_sw = 1

res_coverage_time = 20

DOCUMENT: RESOURCE COVERAGE TIME

res_demand = exog_demand_f

DOCUMENT: RESOURCE DEMAND

time_to_smooth_av = 50

DOCUMENT: TIME TO SMOOTH RESOURCE AVAILABILITY

effect_of_av_on_discovery_relay = GRAPH(availability)

(0.00, 0.4), (0.5, 0.6), (1.00, 1.00), (1.50, 1.60), (2.00, 2.00)

DOCUMENT: EFFECT OF RESOURCE SHORTAGE ON DISCOVERY DELAY

effect_of_av_on_exp = GRAPH(availability)

(0.00, 0.00), (0.2, 0.29), (0.4, 0.51), (0.6, 0.71), (0.8, 0.87), (1.00, 1.00), (1.20, 1.10), (1.40, 1.18), (1.60, 1.22), (1.80, 1.24), (2.00, 1.25)

DOCUMENT: EFFECT OF RESOURCE AVAILABILITY ON EXPENDITURE

effect_of_res_av_on_expl_delay = GRAPH(availability)

(0.00, 0.4), (0.5, 0.6), (1.00, 1.00), (1.50, 1.60), (2.00, 2.00)

DOCUMENT: EFFECT OF RESOURCE AVAILABILITY ON EXPLOITATION DELAY

effect_of_shortage_on_reg_time = GRAPH(availability)

(0.00, 0.01), (0.1, 0.05), (0.2, 0.095), (0.3, 0.16), (0.4, 0.23), (0.5, 0.315), (0.6, 0.42), (0.7, 0.54), (0.8, 0.665), (0.9, 0.815), (1, 1.00)

DOCUMENT: EFFECT OF RESOURCE SHORTAGE ON REGENERATION TIME

fr_reclassified = GRAPH(av_availability)

(0.00, 0.005), (0.1, 0.0033), (0.2, 0.0022), (0.3, 0.00143), (0.4, 0.000975), (0.5, 0.00065), (0.6, 0.000425), (0.7, 0.000275), (0.8, 0.00015), (0.9, 7.5e-05), (1, 0.00)

DOCUMENT: FRACTION SPENT RESOURCES RECLASSIFIED.0005 OR 0

fr_recycled = GRAPH(av_availability)

(0.00, 0.4), (0.1, 0.255), (0.2, 0.165), (0.3, 0.105), (0.4, 0.07), (0.5, 0.045), (0.6, 0.03), (0.7, 0.02), (0.8, 0.01), (0.9, 0.005), (1, 0.00)

DOCUMENT: FRACTION EXPENDED RESOURCES RECYCLED

Spent Resources

spent_res(t) = spent_res(t – dt) + (expenditure – reclassification – regeneration) * dt

INIT spent_res = initial_expenditure*normal_regen_time

DOCUMENT: SPENT RESOURCES

INFLOWS:

expenditure (IN SECTOR: usable resources)OUTFLOWS:

reclassification (IN SECTOR: exploitable resources)regeneration (IN SECTOR: potentially usable resources)

usable resources

usable_res(t) = usable_res(t – dt) + (exploitation – expenditure) * dt

INIT usable_res = initial_expenditure*res_coverage_time

DOCUMENT: USABLE RESOURCES

INFLOWS:

exploitation = exploitable_res/exploitation_delay

DOCUMENT: EXPLOITATION RATE

OUTFLOWS:

expenditure = res_demand*effect_of_av_on_exp/efficiency_of_use

DOCUMENT: EXPENDITURE RATE

av_expenditure = SMTH1(expenditure, time_to_smooth_av_exp)

DOCUMENT: AVERAGE EXPENDITURE RATE

time_to_smooth_av_exp = 5

DOCUMENT: TIME TO SMOOTH EXPENDITURE RATE

Not in a Sector

efficiency_of_use = 0.8

DOCUMENT: EFFICIENCY OF USE

plotted_variable = expenditure*plot_SW + (1-plot_SW)*res_demand

plot_SW = 0

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Saeed, K. (2013). Managing the Energy Basket in the Face of Limits. In: Qudrat-Ullah, H. (eds) Energy Policy Modeling in the 21st Century. Understanding Complex Systems. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8606-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-8606-0_5

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-8605-3

  • Online ISBN: 978-1-4614-8606-0

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics