Skip to main content

Heavy-Metal Attack on Freshwater Side: Physiological Defense Strategies of Macrophytes and Ecotoxicological Ops

  • Chapter
  • First Online:
Physiological Mechanisms and Adaptation Strategies in Plants Under Changing Environment

Abstract

For many years, strong anthropogenic pollutions like heavy metals induce deep changes in all ecosphere compartments especially in streams where deleterious effects on aquatic plants are noted. Indeed, ionic interactions on whole plant surface and permanent replacement of metal pool lead to ecophysiological disruptions among freshwater macrophytes. To prevent from irreversible alterations, macrophytes develop a typical antioxidant systems (e.g., proteins, secondary metabolites, metabolic pathways) to protect intracellular components from reactive oxygen species and to preserve major biosynthesis pathways like photosynthesis. These macrophytes also accumulate solutes to cope with increasing external metal toxicity. Moreover, new anatomical features reducing water stress and leading to cell homeostasis can appear in leaves, as a double endodermis. Tolerance to heavy metals is an interesting feature of freshwater plants for understanding any adaptation and acclimation processes to highly ionic concentrated environments at the genetic level. Indeed, specific genes involved in the synthesis of molecular chaperones might be related to heavy-metal tolerance in macrophytes. Due to their metal sensitivity and bioaccumulation capabilities, these organisms appear essential in ecotoxicological studies like biomonitoring to manage natural habitats.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmad MA, Gaur R, Gupta M (2012) Comparative biochemical and RAPD analysis in two varieties of rice (Oryza sativa) under arsenic stress by using various biomarkers. J Hazard Mater 217–218:141–148

    PubMed  Google Scholar 

  • Aina R, Palin L, Citterio S (2006) Molecular evidence for benzo[a]pyrene and naphthalene genotoxicity in Trifolium repens L. Chemosphere 65:666–673

    PubMed  CAS  Google Scholar 

  • Alscher RG, Erturk N, Heath LS (2002) Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. J Exp Bot 53:1331–1341

    PubMed  CAS  Google Scholar 

  • Angerville R (2009) Evaluation des risques écotoxicologiques liés au déversement de Rejets Urbains par Temps de Pluie (RUTP) dans les cours d’eau : Application à une ville française et à une ville haïtienne. INSA, Lyon

    Google Scholar 

  • Aravind P, Prasad MNV (2005) Zinc mediated protection to the conformation of carbonic anhydrase in cadmium exposed Ceratophyllum demersum L. Plant Sci 169:245–254

    CAS  Google Scholar 

  • Arts G, Davies J, Dobbs M, Ebke P, Hanson M, Hommen U, Knauer K, Loutseti S, Maltby L, Mohr S, Poovey A, Poulsen V (2010) AMEG: the new SETAC advisory group on aquatic macrophyte ecotoxicology. Environ Sci Pollut Res Int 17:820–823

    PubMed  CAS  Google Scholar 

  • Aydin SS, Gokc E, Buyuk I, Aras S (2012) Characterization of stress induced by copper and zinc on cucumber (Cucumis sativus L.) seedlings by means of molecular and population parameters. Mutat Res 746:49–55

    Google Scholar 

  • Babu ST, Akhtar TA, Lampi MA, Tripuranthakam S, Dixon GD, Greenberg BM (2003) Similar stress responses are elicited by copper and ultraviolet radiation in the aquatic plant Lemna gibba: implication of reactive oxygen species as common signals. Plant Cell Physiol 44:1320–1329

    PubMed  CAS  Google Scholar 

  • Babu ST, Tripuranthakam S, Greenberg BM (2005) Biochemical responses of the aquatic higher plant Lemna gibba to a mixture of copper and 1,2-dihydroxyanthraquinone: synergistic toxicity via reactive oxygen species. Environ Toxicol Chem 24:3030–3036

    PubMed  CAS  Google Scholar 

  • Bienert GP, Schjoerring JK, Jahn TP (2006) Membrane transport of hydrogen peroxide. BBA Biomembr 1758:994–1003

    CAS  Google Scholar 

  • Bienert GP, Møller ALB, Kristiansen KA, Schulz A, Møller IM, Schjoerring JK, Jahn TP (2007) Specific aquaporins facilitate the diffusion of hydrogen peroxide across membranes. J Biol Chem 282:1183–1192

    PubMed  CAS  Google Scholar 

  • Brain RA, Cedergreen N (2009) Biomarkers in aquatic plants: selection and utility. Rev Environ Contam Toxicol 198:49–109

    PubMed  Google Scholar 

  • Branco D, Lima A, Almeida SFP, Figueira E (2010) Sensitivity of biochemical markers to evaluate cadmium stress in the freshwater diatom Nitzschia palea (Kützing) W. Smith. Aquat Toxicol 99:109–117

    PubMed  CAS  Google Scholar 

  • Bunluesin S, Kruatrachue M, Pokethitiyook P, Lanza GR, Upatham ES, Soonthornsarathool V (2004) Plant screening and comparison of Ceratophyllum demersum and Hydrilla verticillata for cadmium accumulation. Bull Environ Contam Toxicol 73:591–598

    PubMed  CAS  Google Scholar 

  • Cenkci S, Yıldız M, Hakkı Cigerci I, Konuk M, Bozdag A (2009) Toxic chemicals-induced genotoxicity detected by random amplified polymorphic DNA (RAPD) in bean (Phaseolus vulgaris L.) seedlings. Chemosphere 76:900–906

    PubMed  CAS  Google Scholar 

  • Chatenet P, Botineau M (2001) Use of lichens to demonstrate the presence of trace elements in rivers. Cryptogam Mycol 22:225–237

    Google Scholar 

  • Chauvin C, Peltre MC, Haury J (2008) La bio-indication et les indices macrophytiques, outils d’évaluation et de diagnostic de la qualité des cours d’eau. In: Haury J, Dutartre A, Peltre MC (eds) Plantes aquatiques d’eau douce: biologie, écologie et gestion. CEMAGREF, Antony, pp 91–108

    Google Scholar 

  • Clean Water Act (1977) Laws and concurrent resolutions enacted during the first session of the ninety-fifth congress of the United States of America. US Statut Large 91:1–47

    Google Scholar 

  • Clijsters H, Van Assche F (1985) Inhibition of photosynthesis by heavy metals. Photosynth Res 7:31–40

    CAS  Google Scholar 

  • Conte C, Mutti I, Puglisi P, Ferrarini A, Regina G, Maestri E, Marmiroli N (1998) DNA fingerprinting analysis by a PCR based method for monitoring the genotoxic effects of heavy metals pollution. Chemosphere 37:2739–2749

    PubMed  CAS  Google Scholar 

  • Croteau R, Kutchan TM, Lewis NG (2000) Natural products. In: Buchanan BB, Gruissem W, Jones RL (eds) Biochemistry & molecular biology of plants. American Society of Plant Physiology Press, Rockville, MD, pp 1250–1268

    Google Scholar 

  • Delmail D (2011) Contribution de Myriophyllum alterniflorum et de son périphyton à la biosurveillance de la qualité des eaux face aux métaux lourds. Université de Limoges, Limoges

    Google Scholar 

  • Delmail D, Labrousse P (2012) Plant ageing, a counteracting agent to xenobiotic stress. In: Nagata T (ed) Senescence. InTech Publishers, Rijeka, pp 89–106

    Google Scholar 

  • Delmail D, Buzier R, Simon S, Hourdin P, Botineau M, Labrousse P (2011a) HPLC method for the analysis of α-tocopherol from Myriophyllum alterniflorum. Chem Nat Compound 47:679–680

    CAS  Google Scholar 

  • Delmail D, Labrousse P, Hourdin P, Larcher L, Moesch C, Botineau M (2011b) Differential responses of Myriophyllum alterniflorum DC (Haloragaceae) organs to copper: physiological and developmental approaches. Hydrobiologia 664:95–105

    CAS  Google Scholar 

  • Delmail D, Labrousse P, Hourdin P, Larcher L, Moesch C, Botineau M (2011c) Physiological, anatomical and phenotypical effects of a cadmium stress in different aged chlorophyllian organs of Myriophyllum alterniflorum DC (Haloragaceae). Environ Exp Bot 72:174–181

    CAS  Google Scholar 

  • Delmail D, Labrousse P, Hourdin P, Larcher L, Moesch C, Botineau M (2013) Micropropagation of Myriophyllum alterniflorum (Haloragaceae) for stream rehabilitation: first in vitro culture and reintroduction assays of a heavy-metal hyperaccumulator immersed macrophyte. Int J Phytoremediation 15:647–662

    PubMed  CAS  Google Scholar 

  • Depledge MH (1993) The rational basis for the use of biomarkers as ecotoxicological tools. In: Fossi MC, Leonzio C (eds) Nondestructive biomarkers in vertebrates. Lewis, Boca Raton, FL, pp 271–295

    Google Scholar 

  • Dhawan A, Bajpayee M, Parmar D (2009) Comet assay: a reliable tool for the assessment of DNA damage in different models. Cell Biol Toxicol 25:5–32

    PubMed  CAS  Google Scholar 

  • Diallo MS, Glinka CJ, Goddard WA III, Johnson JH Jr (2005) Characterization of nanoparticles and colloids in aquatic systems 1. Small angle neutron scattering investigations of Suwannee River fulvic acid aggregates in aqueous solutions. J Nanopart Res 7:435–448

    CAS  Google Scholar 

  • Edreva A (2005) Generation and scavenging of reactive oxygen species in chloroplasts: a submolecular approach. Agric Ecosyst Environ 106:119–133

    CAS  Google Scholar 

  • Edwards R, Dixon DP (2000) The role of glutathione transferases in herbicide metabolism. In: Cobb AH, Kirkwood RC (eds) Herbicides and their mechanisms of action. Sheffield Academic Press, Sheffield, pp 38–71

    Google Scholar 

  • Fornazier RF, Ferreira RR, Vitória AP, Molina SMG, Lea PJ, Azevedo RA (2002) Effects of cadmium on antioxidant enzyme activities in sugar cane. Biol Plant 45:91–97

    CAS  Google Scholar 

  • Gallego SM, Pena LB, Barcia RA, Azpilicueta CE, Iannone MF, Rosales EP, Zawoznik MS, Groppa MD, Benavides MP (2012) Unravelling cadmium toxicity and tolerance in plants: insight into regulatory mechanisms. Environ Exp Bot 83:33–46

    CAS  Google Scholar 

  • Gentès S, Maury-Brachet R, Guyoneaud R, Monperrus M, André JM, Davail S, Legeay A (2013) Mercury bioaccumulation along food webs in temperate aquatic ecosystems colonized by aquatic macrophytes in south western France. Ecotoxicol Environ Saf 91:180–187

    PubMed  Google Scholar 

  • Gichner T, Patkova Z, Szakova J, Demnerova K (2006) Toxicity and DNA damage in tobacco and potato plants growing on soil polluted with heavy metals. Ecotoxicol Environ Saf 65:420–426

    PubMed  CAS  Google Scholar 

  • Gichner T, Patkova Z, Szakova J, Znidar I, Mukherjee A (2008a) DNA damage in potato plants induced by cadmium, ethyl methanesulphonate and γ-rays. Environ Exp Bot 62:113–119

    CAS  Google Scholar 

  • Gichner T, Znidar I, Szakova J (2008b) Evaluation of DNA damage and mutagenicity induced by lead in tobacco plants. Mutat Res 652:186–190

    PubMed  CAS  Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930

    PubMed  CAS  Google Scholar 

  • Giorgetti L, Talouizte H, Merzouki M, Caltavuturo L, Geri C, Frassinetti S (2011) Genotoxicity evaluation of effluents from textile industries of the region Fez-Boulmane, Morocco: a case study. Ecotoxicol Environ Saf 74:275–2283

    Google Scholar 

  • Grill E, Lüffler S, Winnacker EL, Zenk MH (1989) Phytochelatins, the heavy-metal-binding peptides of plants, are synthesized from glutathione by a specific-glutamylcysteine dipeptidyl transpeptidase (phytochelatin synthase). Proc Natl Acad Sci U S A 86:6838–6842

    PubMed  CAS  Google Scholar 

  • Guo D, Ma J, Li R, Guo C (2010) Genotoxicity effect of nitrobenzene on soybean (Glycine max) root tip cells. J Hazard Mater 178:1030–1034

    PubMed  CAS  Google Scholar 

  • Gupta M, Sarin NB (2009) Heavy metal induced DNA changes in aquatic macrophytes: random amplified polymorphic DNA analysis and identification of sequence characterized amplified region marker. J Environ Sci 21:686–690

    CAS  Google Scholar 

  • Harguinteguy CA, Schreiber R, Pignata ML (2013) Myriophyllum aquaticum as a biomonitor of water heavy metal input related to agricultural activities in the Xanaes River (Córdoba, Argentina). Ecol Indic 27:8–16

    CAS  Google Scholar 

  • Haury J, Peltre MC, Muller S, Trémolières M, Barbe J, Dutartre A, Guerlesquin M (1996) Macrophyte indices for the assessment of stream water quality in France: preliminary proposals. Ecologie 27:233–244

    Google Scholar 

  • Haury J, Peltre MC, Trémolières M, Barbe J, Thiébaut G, Bernez I, Daniel H, Chatenet P, Haan-Archipof G, Muller S, Dutartre A, Laplace-Treyture C, Cazaubon A, Lambert-Servien E (2006) A new method to assess water trophy and organic pollution—the Macrophyte Biological Index for Rivers (IBMR): its application to different types of river and pollution. Hydrobiologia 570:153–158

    CAS  Google Scholar 

  • Hinojosa-Garro D, Mason CF, Underwood GJC (2008) Macrophyte assemblages in ditches of coastal marshes in relation to land-use, salinity and water quality. Fund Appl Limnol 172:325–337

    CAS  Google Scholar 

  • Ireland EH, Harding SJ, Bonwick GA, Jones M, Smith CJ, Williams JHH (2004) Evaluation of heat shock protein 70 as a biomarker of environmental stress in Fucus serratus and Lemna minor. Biomarkers 9:139–155

    Google Scholar 

  • Iwashina T (2000) The structure and distribution of the flavonoids in plants. J Plant Res 113:287–299

    CAS  Google Scholar 

  • John R, Ahmad P, Gadgil K, Sharma S (2008) Effect of cadmium and lead on growth, biochemical parameters and uptake in Lemna polyrrhiza L. Plant Soil Environ 54:262–270

    CAS  Google Scholar 

  • Kamal M, Ghaly AE, Mahmoud N, Cote R (2004) Phytoaccumulation of heavy metals by aquatic plants. Environ Int 29:1029–1039

    PubMed  CAS  Google Scholar 

  • Kashem MA, Singh BR, Kubota H, Sugawara R, Kitajima N, Kondo T, Kawai S (2010) Zinc tolerance and uptake by Arabidopsis halleri ssp. gemmifera grown in nutrient solution. Environ Sci Pollut Res Int 17:1174–1176

    PubMed  CAS  Google Scholar 

  • Kidd PS, Llugany M, Poschenrieder C, Gunsé B, Barceló J (2001) The role of root exudates in aluminum resistance and silicon-induced amelioration of aluminum toxicity in three variety of maize (Zea mays L.). J Exp Biol 52:1339–1352

    CAS  Google Scholar 

  • Kleeberg A (2013) Impact of aquatic macrophyte decomposition on sedimentary nutrient and metal mobilization in the initial stages of ecosystem development. Aquat Bot 105:41–49

    CAS  Google Scholar 

  • Korpe DA, Aras S (2011) Evaluation of copper-induced stress on eggplant (Solanum melongena L.) seedlings at the molecular and population levels by use of various biomarkers. Mutat Res 719:29–34

    PubMed  Google Scholar 

  • Koukal B, Rossé P, Reinhardt A, Ferrari B, Wilkinson KJ, Loizeau JL, Dominik J (2007) Effect of Pseudokirchneriella subcapitata (Chlorophyceae) exudates on metal toxicity and colloid aggregation. Water Res 41:63–70

    PubMed  CAS  Google Scholar 

  • Kruger NJ, von Schaewen A (2003) The oxidative pentose phosphate pathway: structure and organisation. Curr Opin Plant Biol 6:236–246

    PubMed  CAS  Google Scholar 

  • Labra M, Di Fabio T, Grass F, Regond SMG, Bracale M, Vannini C, Agradi E (2003) AFLP analysis as biomarker of exposure to organic and inorganic genotoxic substances in plants. Chemosphere 52:1183–1188

    PubMed  CAS  Google Scholar 

  • Labra M, Grassi F, Imazio S, Di Fabio T, Citterio S, Sgorbati S, Agradi E (2004) Genetic and DNA-methylation changes induced by potassium dichromate in Brassica napus L. Chemosphere 54:1049–1058

    PubMed  CAS  Google Scholar 

  • Lagadic L, Caquet T, Amiard JC (1997) Biomarqueurs en écotoxicologie: principes et définitions. Masson, Paris

    Google Scholar 

  • Lamelas C, WilKinson KJ, Slaveykova VI (2005) Influence of the composition of natural organic matter on pb bioavailability to microalgae. Environ Sci Technol 39:6109–6116

    PubMed  CAS  Google Scholar 

  • Lead JR, Wilkinson KJ (2006) Aquatic colloids and nanoparticles: current knowledge and future trends. Environ Chem 3:159–171

    CAS  Google Scholar 

  • Lewis S, Donkin ME, Depledge MH (2001) Hsp70 expression in Enteromorpha intestinalis (Chlorophyta) exposed to environmental stressors. Aquat Toxicol 51:277–291

    PubMed  CAS  Google Scholar 

  • Li Y, Trush MA, Yager JD (1994) DNA damage caused by reactive oxygen species originating from a copper-dependent oxidation of the 2-hydroxy catechol of estradiol. Carcinogenesis 15:1421–1427

    PubMed  CAS  Google Scholar 

  • Liu W, Yang YS, Li PJ, Zhou QX, Xie LJ, Han YP (2009) Risk assessment of cadmium-contaminated soil on plant DNA damage using RAPD and physiological indices. J Hazard Mater 161:878–883

    PubMed  CAS  Google Scholar 

  • Lu Q, Zenhli L, Graetz DE, Stoffella PJ, Yang X (2011) Uptake and distribution of metals by water lettuce (Pistia stratiotes L.). Environ Sci Pollut Res Int 18:978–986

    PubMed  CAS  Google Scholar 

  • Lyubenova L, Pongrac P, Vogel-MikuŠ K, Mezek GK, Vavpetič P, Grlj N, Regvar M, Pelicon P, Schröder P (2013) The fate of arsenic, cadmium and lead in Typha latifolia: a case study on the applicability of micro-PIXE in plant ionomics. J Hazard Mater 248–249:371–378

    PubMed  Google Scholar 

  • Majer BJ, Grummt T, Uhl M, Knasmüller S (2005) Use of plant bioassays for the detection of genotoxins in the aquatic environment. Acta Hydrochim Hydrobiol 33:45–55

    CAS  Google Scholar 

  • Malec P, Maleva MG, Prasad MNV, Strzałka K (2010) Responses of Lemna trisulca L. (Duckweed) exposed to low doses of cadmium: thiols, metal binding complexes, and photosynthetic pigments as sensitive biomarkers of ecotoxicity. Protoplasma 240:69–74

    PubMed  CAS  Google Scholar 

  • Marchand L, Mench M, Jacob DL, Otte ML (2010) Metal and metalloid removal in constructed wetlands, with emphasis on the importance of plants and standardized measurements: a review. Environ Pollut 158:3447–3461

    PubMed  CAS  Google Scholar 

  • Mechora Š, Stibilj V, Germ M (2013) The uptake and distribution of selenium in three aquatic plants grown in Se(IV) solution. Aquat Toxicol 128–129:53–59

    PubMed  Google Scholar 

  • Memon AR, Schröder P (2009) Implication of metal accumulation mechanisms to phytoremediation. Environ Sci Pollut Res Int 16:162–175

    PubMed  CAS  Google Scholar 

  • Miquel G (2003) La qualité de l’eau et l’assainissement en France. Office parlementaire d’évaluation des choix scientifiques et technologiques, Paris

    Google Scholar 

  • Mishra VK, Tripathi BD (2008) Concurrent removal and accumulation of heavy metals by the three aquatic macrophytes. Bioresour Technol 99:7091–7097

    PubMed  CAS  Google Scholar 

  • Mishra K, Gupta K, Rai UN (2009) Bioconcentration and phytotoxicity of chromium in Eichhornia crassipes. J Environ Biol 30:521–526

    PubMed  CAS  Google Scholar 

  • Mukherjee S, Mukherjee S, Bhattacharyya P, Duttagupta AK (2004) Heavy metal levels and esterase variations between metal-exposed and unexposed duckweed Lemna minor: field and laboratory studies. Environ Int 30:811–814

    PubMed  CAS  Google Scholar 

  • Nagajyoti PC, Lee KD, Sreekanth TVM (2010) Heavy metals, occurrence and toxicity for plants: a review. Environ Chem Lett 8:199–216

    CAS  Google Scholar 

  • Noriega GO, Balestrasse KB, Batlle A, Tomaro ML (2007) Cadmium induced oxidative stress in soybean plants also by the accumulation of δ-aminolevulinic acid. Biometals 20:841–851

    PubMed  CAS  Google Scholar 

  • Ohe T, Watanabe T, Wakabayashi K (2004) Mutagens in surface waters: a review. Mutat Res 567:109–149

    PubMed  CAS  Google Scholar 

  • Papoyan A, Kochian LV (2004) Identification of Thlaspi caerulescens genes that may be involved in heavy metal hyperaccumulation and tolerance. Characterization of a novel heavy metal transporting ATPase. Plant Physiol 136:3814–3823

    PubMed  CAS  Google Scholar 

  • Paramesha S, Vijay R, Bekal M, Kumari S, Pushpalatha KC (2011) A study on lipid peroxidation and total antioxidant status in diabetes with and without hypertension. Res J Pharm Biol Chem Sci 2:329–334

    Google Scholar 

  • Parent C, Capelli N, Dat J (2008) Formes réactives de l’oxygène, stress et mort cellulaire chez les plantes. C R Biol 331:255–261

    PubMed  CAS  Google Scholar 

  • Pawlik-Skowrońska B (2001) Phytochelatin production in freshwater algae Stigeoclonium in response to heavy metals contained in mining water; effects of some environmental factors. Aquat Toxicol 52:241–249

    PubMed  Google Scholar 

  • Pereira GJG, Molina SMG, Lea PJ, Azevedo RA (2002) Activity of antioxidant enzymes in response to cadmium in Crotalaria juncea. Plant Soil 239:123–132

    CAS  Google Scholar 

  • Pérez DJ, Menone ML, Camadro EL, Moreno VJ (2008) Genotoxicity evaluation of the insecticide endosulfan in the wetland macrophyte Bidens laevis L. Environ Pollut 153:695–698

    PubMed  Google Scholar 

  • Pérez DJ, Lukaszewicz G, Menone ML, Camadro EL (2011) Sensitivity of Bidens laevis L. to mutagenic compounds. Use of chromosomal aberrations as biomarkers of genotoxicity. Environ Pollut 159:281–286

    PubMed  Google Scholar 

  • Pichard A, Bisson M, Diderich R, Houeix N, Hulot C, Lacroix G, Lefèvre JP, Leveque S, Magaud H, Morin A, Pépin G (2005a). Cadmium et ses dérivés. Fiche de données toxicologiques et environnementales des substances chimiques. INERIS, Verneuil-en-Halatte

    Google Scholar 

  • Pichard A, Bisson M, Houeix N, Gay G, Lacroix G, Lefèvre JP, Magaud H, Migne V, Morin A, Tissot S (2005b) Cuivre et ses dérivés. Fiche de données toxicologiques et environnementales des substances chimiques. INERIS, Verneuil-en-Halatte

    Google Scholar 

  • Pillitteri LJ, Bogenschutz NL, Torii KU (2008) The bHLH protein, MUTE, controls differentiation of stomata and the hydathode pore in arabidopsis. Plant Cell Physiol 49:934–943

    PubMed  CAS  Google Scholar 

  • Pio MCS, Souza KS, Santana GP (2013) Ability of Lemna aequinoctialis for removing heavy metals from wastewater. Acta Amazon 43:203–210

    CAS  Google Scholar 

  • Pourrut B, Jean S, Silvestre J, Pinelli E (2011) Lead-induced DNA damage in Vicia faba root cells: potential involvement of oxidative stress. Mutat Res 726:123–128

    PubMed  CAS  Google Scholar 

  • Ritossa F (1962) A new puffing pattern induced by heat shock and DNP in Drosophila. Experientia 18:571–573

    CAS  Google Scholar 

  • Rodriguez E, Azevedo R, Fernandes P, Santos C (2011) Cr(VI) induces DNA damage, cell cycle arrest and polyploidization: a flow cytometric and comet assay study in Pisum sativum. Chem Res Toxicol 24:1040–1047

    PubMed  CAS  Google Scholar 

  • Roméo M, Giambérini L (2008) Historique. In: Amiard JC, Amiard-triquet C (eds) Les biomarqueurs dans l’évaluation de l’état écologique des milieux aquatiques. Tec & Doc Lavoisier, Paris, pp 17–55

    Google Scholar 

  • Sang N, Li G, Xin X (2006) Municipal landfill leachate induces cytogenetic damage in root tips of Hordeum vulgare. Ecotoxicol Environ Saf 63:469–473

    PubMed  CAS  Google Scholar 

  • Sanità di Toppi L, Gabrielli R (1999) Responses to cadmium in higher plants. Environ Exp Bot 41:105–130

    Google Scholar 

  • Savva D (1998) Use of DNA fingerprinting to detect genotoxic effects. Ecotoxicol Environ Saf 41:103–106

    PubMed  CAS  Google Scholar 

  • Saygideger SD, Keser G, Dogan M (2013) Effects of lead on chlorophyll content, total nitrogen, and antioxidant enzyme activities in duckweed (Lemna minor). Int J Agric Biol 15:145–148

    CAS  Google Scholar 

  • Schaich KM (2005) Lipid oxidation: theoretical aspects. In: Shahidi F (ed) Bailey’s industrial oil and fat products. Wiley, Hoboken, pp 269–355

    Google Scholar 

  • Seth CS, Misra V, Chauhan LKS (2012) Accumulation, detoxification, and genotoxicity of heavy metals in Indian mustard (Brassica juncea L.). Int J Phytoremediation 14:1–13

    PubMed  Google Scholar 

  • Shi GR, Cai QS (2008) Photosynthetic and anatomic responses of peanut leaves to cadmium stress. Photosynthetica 46:627–630

    CAS  Google Scholar 

  • Slaveykova VI, Wilkinson KJ (2002) Physicochemical aspects of lead bioaccumulation by Chlorella vulgaris. Environ Sci Technol 36:969–975

    PubMed  CAS  Google Scholar 

  • Souza FA, Dziedzic M, Cubas SA, Maranho LT (2013) Restoration of polluted waters by phytoremediation using Myriophyllum aquaticum (Vell.) Verdc., Haloragaceae. J Environ Manag 120:5–9

    CAS  Google Scholar 

  • Srivastava S, Mishra S, Tripathi RD, Dwivedi S, Gupta DK (2006) Copper-induced oxidative stress and responses of antioxidants and phytochelatins in Hydrilla verticillata (L.f.) Royle. Aquat Toxicol 80:405–415

    PubMed  CAS  Google Scholar 

  • Sunda WG, Huntsman SA (1998) Processes regulating cellular metal accumulation and physiological effects: phytoplankton as model systems. Sci Total Environ 219:165–181

    CAS  Google Scholar 

  • Teisseire H, Guy V (2000) Copper-induced changes in antioxidation enzymes activities in fronds of duckweed (Lemna minor). Plant Sci 153:65–72

    CAS  Google Scholar 

  • Teisseire H, Couderchet M, Vernet G (1998) Toxic responses and catalase activity of Lemna minor L. exposed to folpet, copper, and their combination. Ecotoxicol Environ Saf 40:194–200

    PubMed  CAS  Google Scholar 

  • Thompson JE, Legge RL, Barber RF (1987) The role of free radicals in senescence and wounding. New Phytol 105:317–344

    CAS  Google Scholar 

  • Trémolières M, Combroux I, Thiébaut G, Haury J (2008) Réponses des communautés végétales aux conditions environnementales: perturbations ou contraintes. In: Haury J, Dutartre A, Peltre MC (eds) Plantes aquatiques d’eau douce : biologie, écologie et gestion. CEMAGREF, Antony, pp 63–77

    Google Scholar 

  • Van Gestel CAM, Van Brummelen TC (1996) Incorporation of the biomarker concept in ecotoxicology calls for a redefinition of terms. Ecotoxicology 5:217–225

    PubMed  Google Scholar 

  • Víteček J, Petrlová J, Petřek J, Adam V, Havel L, Kramer KJ, Kizek R (2007) Application of fluorimetric analysis of plant esterases to study of programmed cell death and effects of cadmium(II) ions. Biol Plant 51:551–555

    Google Scholar 

  • Wang Q, Li Z, Cheng S, Wu Z (2009) Influence of humic acids on the accumulation of copper and cadmium in Vallisneria spiralis L. from sediment. Environ Earth Sci 61:1207–1213

    Google Scholar 

  • Worms I, Simon DF, Hassler CS, Wilkinson KJ (2006) Bioavailability of trace metals to aquatic microorganisms: importance of chemical, biological and physical processes on biouptake. Biochimie 88:1721–1731

    PubMed  CAS  Google Scholar 

  • Xie WY, Huang Q, Li G, Rensing C, Zhu YG (2013) Cadmium accumulation in the rootless macrophyte Wolffia globosa and its potential for phytoremediation. Int J Phytoremediation 15:385–397

    PubMed  CAS  Google Scholar 

  • Yin L, Zhou Y, Fan X, Lu R (2002) Induction of phytochelatins in Lemna aequinoctialis in response to cadmium exposure. Bull Environ Contam Toxicol 68:561–568

    PubMed  CAS  Google Scholar 

  • Yu Y, Kong F, Wang M, Qian L, Shi X (2007) Determination of short-term copper toxicity in a multispecies microalgal population using flow cytometry. Ecotox Environ Saf 66:49–56

    CAS  Google Scholar 

  • Zhu YL, Zayed AM, Qian JH, de Souza M, Terry N (1999) Phytoaccumulation of trace elements by wetlands: II water hyacinth. J Environ Qual 28:339–344

    CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the University of Rennes 1, the UMR CNRS 6226 ISCR, the University of Limoges, and the GRESE EA 4330.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Delmail .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Delmail, D., Labrousse, P. (2014). Heavy-Metal Attack on Freshwater Side: Physiological Defense Strategies of Macrophytes and Ecotoxicological Ops. In: Ahmad, P., Wani, M. (eds) Physiological Mechanisms and Adaptation Strategies in Plants Under Changing Environment. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8600-8_2

Download citation

Publish with us

Policies and ethics