Skip to main content

Abstract

Heavy metal pollution has become one of the major culprits of environmental disasters. Their toxicity and damaging effects on soils and agricultural lands and direct impact on human health through soils and agricultural lands are considered a major world challenge. Many removal processes, such as mechanical and physicochemical ones have been introduced. However, because of their high cost, attention has been focused on biological solutions, which are less expensive and more efficient. Interestingly, some microorganisms have shown high potential to metal tolerance and removal. Cupriavidus metallidurans is certainly the most known example. The rhizosphere, an important interface between soil and plant, holds a diverse prokaryotic microflora population known as rhizobacteria. An important fraction of these microorganisms have been found to be involved in the removal of heavy metals through a panoply of mechanisms including release of chelating substances, microenvironment acidification, and promotion of redox potentials. The different mechanisms of resistance and interactions with metals have also been discussed. It has been also shown that rhizospheric bacteria may play beneficial roles in phytoremediation processes via facilitating bioavailability of heavy metals to plants such as maize and tomato, as well as for metal stress alleviation along rhizosphere of sensitive crops. In this chapter, we focused on the potentials of rhizobacteria for restoration of metal-affected soils and their role in improving metal uptake for phytoremediation processes. Because of the advantages of being less costly and environmental friendly, microbes are still the best tool for metal removal. But as living organisms, subject to death and decomposition through the geochemical cycles in the soil, their metal cleaning processes are never perfect and the removal may be tentative or not definitive. One of the foci now is on microbial bioengineering and genetic improvement of rhizobacteria and other soil microbial abilities for metal handling. Among the various microbial phyla in the rhizosphere, actinobacteria have drawn great interest due to their high biological compound production, which confer adaptation to a wide spectrum of ecological conditions, including metal contamination in soils. Their extremophilic traits and biological competitiveness in soil present them as possible efficient candidate for bioremediation. We included here their plant growth promotion capacity as well as their potentials for metal bioremediation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abou-Shanab RA, Ghozlan H, Ghanem K, Moawad H (2005) Behaviour of bacterial populations isolated from rhizosphere of Diplachne fusca dominant in industrial sites. World J Microbiol Biotechnol 21:1095–1101

    CAS  Google Scholar 

  • Aldesuquy HS, Mansour FA, Abo-Hamed SA (1998) Effect of the culture filtrates of Streptomyces on growth and productivity of wheat plants. Folia Microbiol 43:465–470

    Google Scholar 

  • Alkorta I, Garbisu C (2001) Phytoremediation of organic contaminants in soils. Bioresour Technol 79:273–276

    PubMed  CAS  Google Scholar 

  • Arshad M, Saleem M, Hussain S (2007) Perspectives of bacterial ACC deaminase in phytoremediation. Trends Biotechnol 25:356–362

    PubMed  CAS  Google Scholar 

  • Avery S (1995) Microbial interactions with caesium—implications for biotechnology. J Chem Technol Biotechnol 62:3–16

    CAS  Google Scholar 

  • Barkay T, Schaefer J (2001) Metal and radionuclide bioremediation: issues, considerations and potential. Curr Opin Microbiol 4:318–323

    PubMed  CAS  Google Scholar 

  • Barkay T, Miller SM, Summers AO (2003) Bacterial mercury resistance from atoms to ecosystems. FEMS Microbiol Rev 27:355–384

    PubMed  CAS  Google Scholar 

  • Belimov AA, Dodd IC, Hontzeas N, Theobald JC, Safronova VI, Davies WJ (2008) Rhizosphere bacteria containing 1-aminocyclopropane-1-carboxylate deaminase increase yield of plants grown in drying soil via both local and systemic hormone signaling. New Phytol 181:413–423

    Google Scholar 

  • Beolchini F, Fonti V, Rocchetti L, Saraceni G, Pietrangeli B, Dell’Anno A (2013) Chemical and biological strategies for the mobilisation of metals/semi-metals in contaminated dredged sediments: experimental analysis and environmental impact assessment. Chem Ecol 29(5):415–426

    Google Scholar 

  • Borges-Walmsley MI, Mckeegan KS, Walmsley AR (2003) Structure and function of efflux pumps that confer resistance to drugs. Biochem J 376:313–338

    PubMed  CAS  Google Scholar 

  • Braud A, Jezequel K, Bazot S, Lebeau T (2009) Enhanced phytoextraction of an agricultural Cr- and Pb-contaminated soil by bioaugmentation with siderophore-producing bacteria. Chemosphere 74:280–286

    PubMed  Google Scholar 

  • Bruins MR, Kapil S, Oehme FW (2000) Microbial resistance to metals in the environment. Ecotoxicol Environ Saf 45:198–207

    PubMed  CAS  Google Scholar 

  • Canovas D, Cases I, Lorenzo V (2003) Heavy metal tolerance and metal homeostasis in Pseudomonas putida as revealed by complete genome analysis. Environ Microbiol 5:1242–1256

    PubMed  CAS  Google Scholar 

  • Cindy HW, Wood TK, Mulchandani A, Chen W (2006) Engineering plant-microbe symbiosis for rhizoremediation of heavy metals. Appl Environ Microbiol 72:1129–1134

    Google Scholar 

  • Colin LV, Liliana BV, Abate CM (2012) Indigenous microorganisms as potential bioremediators for environments contaminated with heavy metals. Int Biodeterior Biodegrad 69:28–37

    CAS  Google Scholar 

  • Colin LV, Pereira CE, Villegas LB, Amoroso MJ, Abate CM (2013) Production and partial characterization of bioemulsifier from a chromium-resistant actinobacteria. Chemosphere 90:1372–1378

    PubMed  CAS  Google Scholar 

  • Compant S, Clement C, Sessitsch A (2010) Plant growth-promoting bacteria in the rhizo- and endosphere of plants: their role, colonization, mechanisms involved and prospects for utilization. Soil Biol Biochem 42:669–678

    CAS  Google Scholar 

  • Conrath U, Beckers GJM, Flors V, Garcia-Agustin P, Jakab G, Mauch F, Newman MA, Pieterse CMJ, Poinssot B, Pozo MJ, Pugin A, Schaffrath U, Ton J, Wendehenne D, Zimmerli L, Mauch-Mani B (2006) Priming: getting ready for battle. Mol Plant Microbe Interact 19:1062–1071

    PubMed  CAS  Google Scholar 

  • Copping LG, Duke SO (2007) Natural products that have been used commercially as crop protection agents. Pest Manag Sci 63:524–554

    PubMed  CAS  Google Scholar 

  • Cunningham SD, Berti WR, Huang JW (1995) Phytoremediation of contaminated soils. Trends Biotechnol 13:393–397

    CAS  Google Scholar 

  • Dash HR, Das S (2012) Bioremediation of mercury and importance of bacterial mer genes. Int Biodeterior Biodegrad 75:207–213

    CAS  Google Scholar 

  • De Carvalho Costa FE, Soares De Melo I (2012) Endophytic and rhizospheric bacteria from Opuntia ficus-indica mill and their ability to promote plant growth in cowpea, Vigna unguiculata (L.) walp. Afr J Microbiol Res 6:1345–1353

    Google Scholar 

  • Dell’Amico E, Cavalca L, Andreoni V (2008) Improvement of Brassica napus growth under cadmium stress by cadmium-resistant rhizobacteria. Soil Biol Biochem 40:74–84

    Google Scholar 

  • Delvasto P, Ballester A, Munoz JA, Gonzalez F, Blazquez ML, Igual JM, Valverde A (2009) Mobilization of phosphorus from iron ore by the bacterium Burkholderia caribensis FeGL03. Miner Eng 22:1–9

    CAS  Google Scholar 

  • Dimkpa CO, Merten D, Svatos A, Buchel G, Kothe E (2009) Metal-induced oxidative stress impacting plant growth in contaminated soil is alleviated by microbial siderophores. Soil Biol Biochem 41:154–162

    CAS  Google Scholar 

  • Doumbou CL, Hamby Salove MK, Crawford DL, Beaulieu C (2011) Actinomycetes, promising tools to control plant diseases and to promote plant growth. Phytoprotection 82:85–102

    Google Scholar 

  • Duffus JH (2002) Heavy metals: a meaningless term? Pure Appl Chem 74:793–807

    CAS  Google Scholar 

  • Egamberdieva D (2009) Alleviation of salt stress by plant growth regulators and IAA producing bacteria in wheat. Acta Physiol Plant 31:861–864

    CAS  Google Scholar 

  • Ehrlich HL (1997) Microbes and metals. Appl Microbiol Biotechnol 48:687–692

    CAS  Google Scholar 

  • El-Tarabily KA, Krishnapillai S (2006) Non-Streptomyces actinomycetes as biocontrol agents of soil-borne fungal plant pathogens and as plant growth promoters. Soil Biol Biochem 38:1505–1520

    CAS  Google Scholar 

  • El-Tarabily KA, Hardy GEST, Sivasithamparam K, Hussein AM, Kurtboke DI (1997) The potential for the biological control of cavity-spot disease of carrots, caused by Pythium cloratum, by Streptomyces and non-Streptomyces actinomycetes. New Phytol 137:495–507

    Google Scholar 

  • El-Tarabily KA, Soliman MH, Nassar AH, Al-Hassani HA, Sivasithamparam K, McKenna F, Hardy GEST (2000) Biological control of Sclerotinia minor using a chitinolytic bacterium and actinomycetes. Plant Pathol 49:573–583

    Google Scholar 

  • El-Tarabily KA, Hardy GEST, Sivasithamparam K (2010) Performance of three endophytic actinomycetes in relation to plant growth promotion and biological control of Pythium aphanidermatum, a pathogen of cucumber under commercial field production conditions in the United Arab Emirates. Eur J Plant Pathol 128:527–539

    CAS  Google Scholar 

  • Faisal M, Hasnain S (2006) Growth stimulatory effect of Ochrobactrum intermedium and Bacillus cereus on Vigna radiata plants. Lett Appl Microbiol 43:461–466

    PubMed  CAS  Google Scholar 

  • Finneran KT, Housewright ME, Lovley DR (2002) Multiple influences of nitrate on uranium solubility during bioremediation of uranium-contaminated subsurface sediments. Environ Microbiol 4:510–516

    PubMed  CAS  Google Scholar 

  • Fogarti RV, Tobin JM (1996) Fungal melanins and their interactions with metals. Enzyme Microb Technol 19:311–317

    Google Scholar 

  • Francis I, Holsters M, Vereecke D (2010) The gram positive side of plant-microbe interactions. Environ Microbiol 12:1–12

    PubMed  CAS  Google Scholar 

  • Gadd GM (2004) Microbial influence on metal mobility and application for bioremediation. Geoderma 122:109–119

    CAS  Google Scholar 

  • Gadd GM (2008) Transformation and mobilization of metals, metalloids, and radionuclides by microorganisms. In: Violante A, Huang PM, Gadd GM (eds) Biophysico-chemical processes of heavy metals and metalloids in soil environments. Wiley, New York, pp 53–96

    Google Scholar 

  • Ghodhbane-Gtari F, Essoussi I, Chattaoui M, Chouaia B, Jaouani A, Daffonchio D, Boudabous A, Gtari M (2010) Isolation and characterization of non-Frankia actinobacteria from root nodules of Alnus glutinosa, Casuarina glauca and Elaeagnus angustifolia. Symbiosis 50:51–57

    CAS  Google Scholar 

  • Ghosh S, Penterman JM, Little RD, Chavez R, Glick BR (2003) Three newly isolated plant growth-promoting bacilli facilitate the seedling growth of canola, Brassica campestris. Plant Physiol Biochem 41:277–281

    CAS  Google Scholar 

  • Giller KE, Witter E, Mcgrath SP (1998) Toxicity of heavy metals to microorganisms and microbial processes in agricultural soils: a review. Soil Biol Biochem 30:1389–1414

    CAS  Google Scholar 

  • Glick BR (2003) Phytoremediation: synergetic use of plants and bacteria to clean up the environment. Biotechnol Adv 21:383–393

    PubMed  CAS  Google Scholar 

  • Glick BR (2010) Using soil bacteria to facilitate phytoremediation. Biotechnol Adv 28:367–374

    PubMed  CAS  Google Scholar 

  • Glick BR, Penrose DM, Li J (1998) A model for the lowering of plant ethylene concentrations by plant growth-promoting bacteria. J Theor Biol 190:63–68

    PubMed  CAS  Google Scholar 

  • Goodnight CJ (2000) Heritability of the ecosystem level. Proc Natl Acad Sci U S A 97:9365–9366

    PubMed  CAS  Google Scholar 

  • Gray EJ, Smith DL (2005) Intracellular and extracellular PGPR: commonalities and distinctions in the plant-bacterium signaling processes. Soil Biol Biochem 37:395–412

    CAS  Google Scholar 

  • Gremion F, Chatzinotas A, Harms H (2003) Comparative 16s rDNA and rRNA sequence analysis indicates that actinobacteria might be a dominant part of the metabolically active bacteria in heavy metal-contaminated bulk and rhizosphere soil. Environ Microbiol 5:896–907

    PubMed  CAS  Google Scholar 

  • Gtari M, Essoussi I, Maaoui R, Sghaier H, Boujmil R, Gury J, Pujic P, Brusetti L, Chouaia B, Crotti E, Daffonchio D, Boudabous A, Normand P (2012) Contrasted resistance of stone-dwelling Geodermatophilaceae species to stresses known to give rise to reactive oxygen species. FEMS Microbiol Ecol 80:566–577

    PubMed  CAS  Google Scholar 

  • Haferburg G, Kothe E (2007) Microbes and metals: interactions in the environment. J Basic Microbiol 47:453–467

    PubMed  CAS  Google Scholar 

  • Hamaki T, Suzuki R, Fudou Y, Jojima T, Kajiura A, Tabuchi KS, Shibai H (2005) Isolation of novel bacteria and actinomycetes using soil-extract agar medium. J Biosci Bioeng 99:485–492

    PubMed  CAS  Google Scholar 

  • Hamdali H, Hafidi M, Virolle MJ, Ouhdouch Y (2008) Rock phosphate-solubilizing actinomycetes: screening for plant growth-promoting activities. World J Microbiol Biotechnol 24:2565–2575

    CAS  Google Scholar 

  • Hardoim PR, Overbeek LSV, Van Elsas JD (2008) Properties of bacterial endophytes and their proposed role in plant growth. Trends Microbiol 16:463–471

    PubMed  CAS  Google Scholar 

  • Horitsu H, Takagi M, Tomoyeda M (1978) Isolation of a mercuric chloride-tolerant bacterium and uptake of mercury by the bacterium. Eur J Appl Microbiol 5:279–290

    CAS  Google Scholar 

  • Huang Q, Jianmei W, Wenli C, Xueyuan L (2000) Adsorption of cadmium by soil colloids and minerals in presence of rhizobia. Pedosphere 10:299–307

    CAS  Google Scholar 

  • Jarup L (2003) Hazards of heavy metals contamination. Br Med Bull 68:167–182

    PubMed  Google Scholar 

  • Joshi PM, Juwarkar AA (2009) In vivo studies to elucidate the role of extracellular polymeric substances from Azotobacter in immobilization of heavy metals. Environ Sci Technol 43:5884–5889

    PubMed  CAS  Google Scholar 

  • Kalinowski BE, Oskarsson A, Albinsson Y, Arlinger J, Odegaard-Jensen A, Andlid T, Pedersen K (2004) Microbial leaching of uranium and other trace elements from shale mine tailings at Ranstad. Geoderma 122:177–194

    CAS  Google Scholar 

  • Karelova E, Harichova J, Stojnev T, Pangallo D, Ferianc P (2011) The isolation of heavy-metal resistant culturable bacteria and resistance determinants from a heavy-metal contaminated site. Biologia 1:18–26

    Google Scholar 

  • Khamna S, Yokota A, Lumyong S (2009) Actinomycetes isolated from medicinal plant rhizosphere soils: diversity and screening of antifungal compounds, indole-3-acetic acid and siderophore production. World J Microbiol Biotechnol 25:649–655

    CAS  Google Scholar 

  • Khan AG (2005) Role of soil microbes in the rhizosphere of plants growing on trace metal contaminated soils in phytoremediation. J Trace Elem Med Biol 18:355–364

    PubMed  CAS  Google Scholar 

  • Khan MS, Zaidi A, Wani PA, Oves M (2009) Role of plant growth promoting rhizobacteria in the remediation of metal contaminated soils. Environ Chem Lett 7:1–19

    Google Scholar 

  • Khan MS, Zaidi A, Wani PA, Oves M (2010) Role of plant growth promoting rhizobacteria in the remediation of metal contaminated soils: a review. In: Lichtfous E (ed) Organic farming, pest control and remediation of soil pollutants sustainable agriculture reviews. Springer, The Netherlands, pp 319–350

    Google Scholar 

  • Kong S, Johnstone DL, Yonge DR, Petersen JN, Brouns TM (1994) Long-term intracellular chromium partitioning with subsurface bacteria. Appl Microbiol Biotechnol 42:403–407

    CAS  Google Scholar 

  • Kumar A (2012) Role of plant-growth-promoting rhizobacteria in the management of cadmium-contaminated soil. In: Zaidi A et al (eds) Toxicity of heavy metals to legumes and bioremediation. Springer, Wien, pp 163–178

    Google Scholar 

  • Kumar KV, Patra DD (2013) Effect of metal tolerant plant growth promoting bacteria on growth and metal accumulation in Zea mays plants grown in fly ash amended soil. Int J Phytoremediation 15:743–755

    PubMed  CAS  Google Scholar 

  • Lakzian A, Murphy P, Turner A, Beynon JL, Giller KE (2002) Rhizobium leguminozarum bv. Viciae populations in soils increasing heavy metal contamination: abundance, plasmid profiles, diversity and metal tolerance. Soil Biol Biochem 34:519–529

    CAS  Google Scholar 

  • Lambrecht M, Okon Y, Vande Broek A, Vanderleyden J (2000) Indole-3 acetic acid: a reciprocal signalling molecule in bacteria-plant interactions. Trends Microbiol 8:298–300

    PubMed  CAS  Google Scholar 

  • Langley S, Beveridge TJ (1999) Metal binding by Pseudomonas aeruginosa PAO1 is influenced by growth of the cells as a biofilm. Can J Microbiol 45:616–622

    PubMed  CAS  Google Scholar 

  • Larkin M, Kulakov LA, Allen CCR (2005) Biodegradation and Rhodococcus—masters of catabolic versatility. Curr Opin Biotechnol 16:282–290

    PubMed  CAS  Google Scholar 

  • Lazzaro A, Widmer F, Sperisen C, Frey B (2008) Identification of dominant bacterial phylotypes in a cadmium-treated forest soil. FEMS Microbiol Ecol 63:143–155

    PubMed  CAS  Google Scholar 

  • Ledin M (2000) Accumulation of metals by microorganisms—processes and importance for soil systems. Earth Sci Rev 51:1–31

    CAS  Google Scholar 

  • Lee J, Postmaster A, Peng Soon H, Keast D, Carson KC (2012) Siderophore production by actinomycetes isolated from two soil sites in western Australia. Biometals 25:285–296

    PubMed  CAS  Google Scholar 

  • Li PF, Qiu GL, Shang LH, Li ZG (2009) Mercury pollution in Asia: a review of the contaminated sites. J Hazard Mater 168:591–601

    PubMed  CAS  Google Scholar 

  • Lippmann B, Leinhos V, Bergmann H (1995) Influence of auxin producing rhizobacteria on root morphology and nutrient accumulation of crops, pt. 1: changes in root morphology and nutrient accumulation in maize (Zea mays L.) caused by inoculation with indole-3 acetic acid (IAA) producing Pseudomonas and Acinetobacter strains or IAA applied exogenously. Angew Bot 69:31–36

    CAS  Google Scholar 

  • Lovley DR, Lloyd JR (2000) Microbes with a mettle for bioremediation. Nat Biotechnol 18:600–601

    PubMed  CAS  Google Scholar 

  • Ma Y, Rajkumar M, Freitas H (2009) Inoculation of plant growth promotion bacterium Achromobacter xylosoxidans strain Ax10 for the improvement of copper phytoextraction by Brassica juncea. J Environ Manage 90:831–837

    PubMed  Google Scholar 

  • Ma Y, Prasad MNV, Rajkumar M, Freitas H (2011) Plant growth promoting rhizobacteria and endophytes accelerate phytoremediation of metalliferous soils. Biotechnol Adv 29:248–258

    PubMed  CAS  Google Scholar 

  • Madhaiyan M, Poonguzhali S, Sa T (2007) Metal tolerating methylotrophic bacteria reduces nickel and cadmium toxicity and promotes plant growth of tomato (Lycopersicon esculentum L.). Chemosphere 69:220–228

    PubMed  CAS  Google Scholar 

  • Madhaiyan M, Poonguzhali S, Lee JS, Senthilkumar M, Lee KC, Sundaram S (2010) Leifsonia soli sp. nov., a yellow-pigmented actinobacterium isolated from teak rhizosphere soil. Int J Syst Evol Microbiol 60:1322–1327

    PubMed  CAS  Google Scholar 

  • Maier RJ, Pihl TD, Stults L, Sray W (1990) Nickel accumulation and storage in Bradyrhizobium japonicum. Appl Environ Microbiol 56:1905–1911

    PubMed  CAS  Google Scholar 

  • Marta AP, Amoroso MJ, Abate CM (2011) Intracellular chromium accumulation by Streptomyces sp. MC1. Water Air Soil Pollut 214:49–57

    Google Scholar 

  • Martins SJ, De Medeiros FHV, De Souza RM, De Resende MLV, Junior PMR (2013) Biological control of bacterial wilt of common bean by plant growth-promoting rhizobacteria. Biol Control 66(1):65–71

    Google Scholar 

  • Mastretta C, Taghavi S, Van Der Lelie D, Mengoni A, Galardi F, Gonnelli C, Barac T, Boulet J, Nele W, Vangronsveld J (2009) Endophytic bacteria from seeds of Nicotina tabacum can reduce cadmium phytotoxicity. Int J Phytoremediation 11:251–267

    CAS  Google Scholar 

  • Minami R, Uchiyama K, Murakami T, Kawai J, Mikami K, Yamada T, Yokoi D, Ito H, Matsui H, Honma M (1998) Properties, sequence, and synthesis in Escherichia coli of 1-aminocyclopropane-1-carboxylate deaminase from Hansenula saturnus. J Biochem 123:1112–1118

    PubMed  CAS  Google Scholar 

  • Naees M, Ali Q, Shahbaz M, Ali F (2011) Role of rhizobacteria in phytoremediation of heavy metals: an overview. Int Res J Plant Sci 2:220–232

    Google Scholar 

  • Neilands JB (1995) Siderophores: structure and function of microbial iron transport compounds. J Biol Chem 270:26723–26726

    PubMed  CAS  Google Scholar 

  • Nele W, Van Der Lelie D, Safiyh T, Jaco V (2009) Phytoremediation: plant-endophyte partnerships take the challenge. Curr Opin Biotechnol 20:248–254

    Google Scholar 

  • Nies DH (1999) Microbial heavy-metal resistance. Appl Microbiol Biotechnol 51:730–750

    PubMed  CAS  Google Scholar 

  • Nies DH (2006) Efflux-mediated heavy metal resistance in prokaryotes. FEMS Microbiol Rev 27:313–339

    Google Scholar 

  • Nimnoi P, Pongsilp N, Lumyong S (2010) Endophytic actinomycetes isolated from Aquilaria crassna Pierre ex Lec and screening of plant growth promoters production. World J Microbiol Biotechnol 26:193–203

    CAS  Google Scholar 

  • Nosanchuk JD, Casadevall A (2003) The contribution of melanin to microbial pathogenesis. Cell Microbiol 5:203–223

    PubMed  CAS  Google Scholar 

  • Okino S, Iwasaki K, Yagi O, Tanaka H (2000) Development of a biological mercury removal-recovery system. Biotechnol Lett 22:783–788

    CAS  Google Scholar 

  • Palanché T, Blanc S, Hennard C, Abdallah MA, Albrecht-Gary AM (2004) Bacterial iron transport: coordination properties of azotobactin, the highly fluorescent siderophore of Azotobacter vinelandii. Inorg Chem 43:1137–1152

    PubMed  Google Scholar 

  • Panday B, Ghimire P, Prasad Agrawal V (2004) Studies on the antibacterial activities of the actinomycetes isolated from the khumbu region of Nepal. J Biol Sci 23:44–53

    Google Scholar 

  • Patel HA, Patel RK, Khristi SM, Parikh K, Rajendran G (2012) Isolation and characterization of bacterial endophytes from Lycopersicon esculentum plant and their plant growth promoting characteristics. Nepal J Biotechnol 2:37–52

    Google Scholar 

  • Paul AK, Banerjee AK (1983) Determination of optimum conditions for antibiotic production by Streptomyces galbus. Folia Microbiol 28:397–405

    CAS  Google Scholar 

  • Purakayastha TJ (2011) Microbial remediation of arsenic contaminated soils. In: Sherameti I, Varma A (eds) Detoxification of heavy metals, soil biology, vol 30. Springer, Berlin, pp 221–260

    Google Scholar 

  • Rajkumar M, Sandhya S, Prasad MNV, Freitas H (2012) Perspectives of plant-associated microbes in heavy metal phytoremediation. Biotechnol Adv 30:1562–1574

    PubMed  CAS  Google Scholar 

  • Reichman SM (2007) The potential use of the legume-rhizobium symbiosis for the remediation of arsenic contaminated sites. Soil Biol Biochem 39:2587–2593

    CAS  Google Scholar 

  • Rensing C, Sun Y, Mitra B, Rosen BP (1998) Pb(II)-translocating P-type ATPases. J Biol Chem 273:32614–32617

    PubMed  CAS  Google Scholar 

  • Richards JW, Krumholz GD, Chval MS, Tisa LS (2002) Heavy metal resistance patterns of Frankia strains. Appl Environ Microbiol 68:923–927

    PubMed  CAS  Google Scholar 

  • Riley PA (1997) Molecules in focus melanin. Int J Biochem Cell Biol 29:1235–1239

    PubMed  CAS  Google Scholar 

  • Robinson B, Russells C, Hedley M, Clothier B (2001) Cadmium adsorption by rhizobacteria: implications for New Zealand pastureland. Agr Ecosyst Environ 87:315–321

    CAS  Google Scholar 

  • Rosen BP (2002) Biochemistry of arsenic detoxification. FEBS Lett 529:86–92

    PubMed  CAS  Google Scholar 

  • Rosen BP, Ambudkar SV, Borbolla MG, Chen CM, Houng HS, Mobley HLT, Tsujibo H, Zlontnick GW (1985) Ion extrusion system in bacteria. Ann N Y Acad Sci 456:235–244

    PubMed  CAS  Google Scholar 

  • Rouch DA, Lee BTO, Morby AP (1995) Understanding cellular responses to toxic agents: a model for mechanism-choice in bacterial metal resistance. J Ind Microbiol 14:132–141

    PubMed  CAS  Google Scholar 

  • Ruanpanum P, Tangchitsomkid N, Hyde KD, Lumyong S (2010) Actinomycetes and fungi isolated from plant-parasitic nematode infested soils: screening of the effective biocontrol potential, indole-3-acetic acid and siderophore production. World J Microbiol Biotechnol 26:1569–1578

    Google Scholar 

  • Ruiz-Diez B, Quinones MA, Fajardo S, Lopez MA, Higueras P, Fernandez-Pacual M (2012) Mercury-resistant rhizobial bacteria isolated from nodules of leguminous plants growing in high Hg-contaminated soils. Appl Microbiol Biotechnol 96:543–554

    PubMed  CAS  Google Scholar 

  • Samuelson P, Wernerus H, Svedberg M, Stahl S (2000) Staphylococcal surface display of metal-binding polyhistidyl peptides. Appl Environ Microbiol 66:1243–1248

    PubMed  CAS  Google Scholar 

  • Sandalio LM, Dalurzo HC, Gomez M, Romero-Puertas MC, Del Rio LA (2001) Cadmium-induced changes in the growth and oxidative metabolism of pea plants. J Exp Bot 52:2115–2126

    PubMed  CAS  Google Scholar 

  • Saravanan VS, Madhaiyan M, Thangaraju M (2007) Solubilization of zinc compounds by the diazotrophic, plant growth promoting bacterium Gluconacetobacter diazotrophicus. Chemosphere 66:1794–1798

    PubMed  CAS  Google Scholar 

  • Sardi P, Saracchi M, Quaroni S, Petrolini B, Borgonovi GE, Merli S (1992) Isolation of endophytic Streptomyces strains from surface-sterilized roots. Appl Environ Microbiol 58:2691–2693

    PubMed  CAS  Google Scholar 

  • Sayer JA, Gadd GM (2001) Binding of cobalt and zinc by organic acids and culture filtrates of Aspergillus niger grown in the absence or presence of insoluble cobalt or zinc phosphate. Mycol Res 105:1261–1267

    CAS  Google Scholar 

  • Schelert J, Dixit V, Hoang V, Simbahan J, Drozda M, Blum P (2004) Occurrence and characterization of mercury resistance in the hyperthermophilic archaeon Sulfolobus solfataricus by use of gene disruption. J Bacteriol 186:427–437

    PubMed  CAS  Google Scholar 

  • Schluenzen F, Takemoto C, Wilson DN, Kaminishi T, Harms JM, Hanawa-Suetsugu K, Szaflarski W, Kawazoe M, Shirouzo M, Nierhaus KH, Yokoyama S, Fucini P (2006) The antibiotic kasugamycin mimics mRNA nucleotides to destabilize tRNA binding and inhibit canonical translation initiation. Nat Struct Mol Biol 13:871–886

    PubMed  CAS  Google Scholar 

  • Schmidt A, Haferburg G, Sineriz M, Merten D, Buchel G, Kothe E (2005) Heavy metal resistance mechanisms in actinobacteria for survival in AMD contaminated soils. Chem Erd Geochem 65:131–144

    CAS  Google Scholar 

  • Schutze E, Weist A, Klose M, Wach T, Schumann M, Nietzsche S, Merten D, Baumert J, Majzlan J, Kothe E (2013) Taking nature into lab: biomineralization by heavy metal resistant Streptomycetes in soil. Biogeosciences 10:2345–2375

    Google Scholar 

  • Sharma A, Johri BN (2003) Growth promoting influence of siderophore-producing Pseudomonas strains GRP3A and PRS9 in maize (Zea mays L.) under iron limiting conditions. Microbiol Res 158:243–248

    PubMed  CAS  Google Scholar 

  • Sheng X, He L, Wang Q, Ye H, Jiang C (2008) Effects of inoculation of biosurfactant-producing bacillus sp. J119 on plant growth and cadmium uptake in a cadmium-amended soil. J Hazard Mater 155:17–22

    PubMed  CAS  Google Scholar 

  • Sikora RA, Schafer K, Dababat AA (2007) Modes of action associated with microbially induced in planta suppression of plant-parasitic nematodes. Australas Plant Pathol 36:124–134

    Google Scholar 

  • Silver S (1998) Genes for all metals—a bacterial view of the periodic table The 1996 Thom Award lecture. J Ind Microbiol Biotechnol 20:1–12

    PubMed  CAS  Google Scholar 

  • Silver S, Phung LT (1996) Bacterial heavy metal resistance: new surprises. Annu Rev Microbiol 50:753–890

    PubMed  CAS  Google Scholar 

  • Sineriz M, Kothe E, Abate CM (2009) Cadmium biosorption by Streptomyces sp. F4 isolated from former uranium mine. J Basic Microbiol 49:55–62

    Google Scholar 

  • Solano BR, Barriuso J, Gutierrez Manero FJ (2008) Physiological and molecular mechanisms of plant growth promoting rhizobacteria (PGPR). In: Ahmad I, Pichtel J, Hayat S (eds) Plant-bacteria interactions strategies and techniques to promote plant growth. Wiley, Weinheim, pp 41–54

    Google Scholar 

  • Solans M (2007) Discaria trinervis-Frankia symbiosis promotion by saprophytic actinomycetes. J Basic Microbiol 47:243–250

    PubMed  Google Scholar 

  • Solans M, Vobis G, Cassan F, Luna V, Wall LG (2011) Production of phytohormones by root-associated saprophytic actinomycetes isolated from the actinorhizal plant Ochetophila trinervis. World J Microbiol Biotechnol 27:2195–2202

    CAS  Google Scholar 

  • Sriprang R, Hayashi M, Ono H, Takagi M, Hirata K, Murooka Y (2003) Enhanced accumulation of Cd2+ by a Mesorhizobium sp. transformed with a gene from Arabidopsis thaliana coding for phytochelatin synthase. Appl Environ Microbiol 69:1791–1796

    PubMed  Google Scholar 

  • Stolz JF, Basu P, Santini JM, Oremland RS (2006) Arsenic and selenium in microbial metabolism. Annu Rev Microbiol 60:107–130

    PubMed  CAS  Google Scholar 

  • Stolz JF, Basu P, Oremland RS (2010) Microbial arsenic metabolism: new twists on an old poison. Microbe 5:53–59

    Google Scholar 

  • Tipayno S, Chang-Gi K, Sa T (2012) T-RFLP analysis of structural changes in soil bacterial communities in response to metal and metalloid contamination and initial phytoremediation. Appl Soil Ecol 61:137–146

    Google Scholar 

  • Trivedi P, Pandey A, Sa T (2007) Chromate reducing and plant growth promoting activities of psychrotrophic Rhodococcus erythropolis MtCC7905. J Basic Microbiol 47:513–517

    PubMed  CAS  Google Scholar 

  • Umrania VV (2006) Bioremediation of toxic heavy metals using acidothermophilic autotrophies. Bioresour Technol 97:1237–1242

    PubMed  CAS  Google Scholar 

  • Valls M, Lorenzo DV (2002) Exploiting the genetic and biochemical capacities of bacteria for the remediation of heavy metal pollution. FEMS Microbiol Rev 26:327–338

    PubMed  CAS  Google Scholar 

  • Valls M, Atrian S, Lorenzo DV, Fernandez LA (2000) Engineering a mouse metallothionein on the cell surface of Ralstonia eutropha CH34 for immobilization of heavy metals in soil. Nat Biotechnol 18:661–665

    PubMed  CAS  Google Scholar 

  • Van Der Lelie D, Corbisier P, Diels L, Gilis A, Lodewyckx C, Mergeay M, Taghavi S, Spelmans N, Vangronsveld J (2000) The role of bacteria in the phytoremediation of heavy metals. In: Terry N, Banuelos G (eds) Phytoremediation of contaminated soil and water. CRC Press, Boca Raton, pp 265–281

    Google Scholar 

  • Venkatesh NM, Vedaraman M (2012) Remediation of soil contaminated with copper using rhamnolipids produced from Pseudomonas aeruginosa MTCC 2297 using waste frying rice bran oil. Ann Microbiol 62:85–91

    CAS  Google Scholar 

  • Wang Q, Kim D, Dionysiou DD, Sorial GA, Timberlake D (2004) Source and remediation for mercury contamination in aquatic systems—a literature review. Environ Pollut 131:323–336

    PubMed  Google Scholar 

  • Wheeler CT, Hughes LT, Oldroyd J, Pulford ID (2001) Effect of nickel on Frankia and its symbiosis with Alnus glutinosa (L.) gaertn. Plant Soil 231:81–90

    CAS  Google Scholar 

  • Wolfe-Simon F, Blum JS, Kulp TR, Gordon GW, Hoeft SE, Ridge JP, Stolz JF, Webb SM, Weber PK, Davies PCW, Anbar AD, Oremland RS (2011) A bacterium that can grow by using arsenic instead of phosphorus. Science 332:1163–1166

    PubMed  CAS  Google Scholar 

  • Wu SC, Luo YM, Cheung KC, Wong MH (2006) Influence of bacteria on Pb and Zn speciation, mobility and bioavailability in soil: a laboratory study. Environ Pollut 144:765–773

    PubMed  CAS  Google Scholar 

  • Wu SC, Peng XL, Cheung KC, Liu SL, Wong MH (2009) Adsorption kinetics of Pb and Cd by two plant growth promoting rhizobacteria. Bioresour Technol 100:4559–4563

    PubMed  CAS  Google Scholar 

  • Zhuang X, Chen J, Shim H, Bai Z (2007) New advances in plant growth-promoting rhizobacteria for bioremediation. Environ Int 33:406–413

    PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Murugesan Chandrasekaran for critical review and helpful comments. We are also thankful to the reviewer for useful comments on the previous version of this book chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tongmin Sa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Tekaya, S.B., Tipayno, S., Kim, K., Subramanian, P., Sa, T. (2014). Rhizobacteria: Restoration of Heavy Metal-Contaminated Soils. In: Ahmad, P., Wani, M. (eds) Physiological Mechanisms and Adaptation Strategies in Plants Under Changing Environment. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8600-8_11

Download citation

Publish with us

Policies and ethics