Skip to main content

Abstract

Drought and salinity are major constraints on crop production and food security and have adverse impact especially on socioeconomic aspect in many developing countries. Water-deficit stress caused by drought and soil salinisation adversely affects plant growth and crop productivity. Increasing salt tolerance of crop plants either by genetic breeding or use of transgenic approach for gene transfer becomes a challenge today. Biotechnological approaches have enhanced our understanding of the processes underlying plant responses to drought and salinity at the molecular and whole plant levels. Biotechnological tools, including plant transformation, random and targeted mutagenesis, transposon/T-DNA tagging and RNA interference, permit the linking of genes to their biological function, thereby elucidating their contribution to traits, in ways not previously possible (closing the genotype to phenotype gap). With this information, biotechnology has the potential to deliver higher and more stable yields for saline and water-limited environments. Here, we review the biotechnological methodologies that are available and the prospects for their successful application for improving drought and salinity tolerance in cereals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbasi F, Komatsu S (2004) A proteomic approach to analyze salt responsive proteins in rice leaf sheath. Proteomics 4:2072–2081

    CAS  PubMed  Google Scholar 

  • Altpeter F, Baisakh N, Beachy R, Bock R, Capell T, Christou P, Daniell H, Datta K, Datta S, Dix PJ, Fauquet C, Huang N, Kohli A, Mooibroek H, Nicholson L, Nguyen TT, Raemakers K, Romano A, Somers DA, Stoger E, Taylor N, Visser R (2005) Particle bombardment and the genetic enhancement of crops: myths and realities. Mol Breed 15:305–327

    Google Scholar 

  • Anai T (2012) Potential of a mutant-based reverse genetic approach for functional genomics and molecular breeding in soybean. Breed Sci 61(5):462–467

    CAS  PubMed Central  PubMed  Google Scholar 

  • Andrews MR, Mitra PP, DeCarvalho R (2001) Tripling the capacity of wireless communication using electromagnetic polarization. Nature 409:316–318

    CAS  PubMed  Google Scholar 

  • Baulcombe DC (2004) RNA silencing in plants. Nature 431:356–363

    CAS  PubMed  Google Scholar 

  • Bayer E, Bottrill AR, Walshaw J, Vigouroux M, Naldrett MJ, Thomas CL, Mule AJ (2005) Arabidopsis cell wall proteome defined using multidimensional protein identification technology. Proteomics 6:301–311

    Google Scholar 

  • Brenner S, Johnson M, Bridgham J, Golda G, Lloyd DH, Johnson D, Luo SJ, McCurdy S, Foy M, Ewan M, Roth R, George D, Eletr S, Albrecht G, Vermaas E, Williams SR, Moon K, Burcham T, Pallas M, DuBridge RB, Kirchner J, Fearon K, Mao J, Corcoran K (2000) Gene expression analysis by massively parallel signature sequencing (MPSS) on microbead arrays. Nat Biotechnol 18:630–634

    CAS  PubMed  Google Scholar 

  • Brosche M, Vinocur B, Alatalo ER, Lamminmaki A, Teichmann T, Ottow EA, Djilianov D, Afif D, Bogeat-Triboulot MB, Altman A, Polle A, Dreyer E, Rudd S, Paulin L, Auvinen P, Kangasjarvi J (2005) Gene expression and metabolite profiling of Populus euphratica growing in the Negev desert. Genome Biol 6:R101

    PubMed Central  PubMed  Google Scholar 

  • Buchanan C, Lim S, Salzman RA, Kagiampakis I, Klein RR, Pratt LH, Cordonnier-Pratt M-M, Klein PE, Mullet JE (2005) Sorghum bicolor’s transcriptome response to dehydration, high salinity and ABA. Plant Mol Biol 58:699–720

    CAS  PubMed  Google Scholar 

  • Caldwell DG, McCallum N, Shaw P, Muehlbauer GJ, Marshall DF, Waugh R (2004) A structured mutant population for forward and reverse genetics in Barley (Hordeum vulgare L.). Plant J 40:143–150

    CAS  PubMed  Google Scholar 

  • Chen W, Provart NJ, Glazebrook J, Katagiri F, Chang HS, Eulgem T, Mauch F, Luan S, Zou G, Whitham SA, Budworth PR, Tao Y, Xie Z, Chen X, Lam S, Kreps J, Harper J, Si-Ammour A, Mauch-Mani B, Heinlein M, Kobayashi K, Hohn T, Dangl J, Wang X, Zhu T (2002) Expression profile matrix of Arabidopsis transcription factor genes suggests their putative functions in response to environmental stresses. Plant Cell 14:559–574

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chen L, Huang L, Min D, Philips A, Wang S, Madgwick PJ, Parry MAJ, Hu YG (2012) Development and characterization of a new TILLING population of common bread wheat (Triticum aestivum L.). PLoS One 7(7):e41750

    Google Scholar 

  • Cheng M, Fry JE, Pang SZ, Zhou HP, Hironaka CM, Duncan DR, Conner TW, Wan YC (1997) Genetic transformation of wheat mediated by Agrobacterium tumefaciens. Plant Physiol 115:971–980

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cheng M, Hu TC, Layton J, Liu CN, Fry JE (2003) Desiccation of plant tissues post Agrobacterium infection enhances T-DNA delivery and increases stable transformation efficiency in wheat. In Vitro Cell Dev Biol Plant 39:595–604

    CAS  Google Scholar 

  • Cheng M, Lowe BA, Spencer TM, Ye XD, Armstrong CL (2004) Factors influencing Agrobacterium-mediated transformation of monocotyledonous species. In Vitro Cell Dev Biol Plant 40:31–45

    Google Scholar 

  • Chitteti BR, Peng ZH (2006) Proteome and phosphoproteome differential expression under salinity stress in rice (Oryza sativa) roots. J Proteome Res 6:1718–1727

    Google Scholar 

  • Chuang CF, Meyerowitz EM (2000) Specific and heritable genetic interference by double-stranded RNA in Arabidopsis thaliana. Proc Natl Acad Sci U S A 97:4985–4990

    CAS  PubMed Central  PubMed  Google Scholar 

  • Clark LJ, Price AH, Steele KA, Whalley R (2008) Evidence from near-isogenic lines that root penetration increases with root diameter and bending stiffness in rice. Funct Plant Biol 35:1163–1171

    Google Scholar 

  • Cloonan N, Forrest AR, Kolle G, Gardiner BB, Faulkner GJ, Brown MK, Taylor DF, Steptoe AL, Wani S, Bethel G, Robertson AJ, Perkins AC, Bruce SJ, Lee CC, Ranade SS, Peckham HE, Manning JM, McKernan KJ, Grimmond SM (2008) Stem cell transcriptome profiling via massive-scale mRNA sequencing. Nat Methods 5:613–619

    CAS  PubMed  Google Scholar 

  • Courtois B, Ahmadi N, Khowaja F, Price A, Rami JF, Frouin J, Hamelin C, Ruiz M (2009) Rice root genetic architecture: meta-analysis from a QTL database improves resolution to a few candidate genes. Rice 2:115–128

    Google Scholar 

  • Cui S, Huang F, Wang J, Ma X, Cheng Y, Liu J (2005) A proteomic analysis of cold stress responses in rice seedlings. Proteomics 5:3162–3172

    CAS  PubMed  Google Scholar 

  • Desikan R, Mackerness SAH, Hancock JT, Neill SJ (2001) Regulation of the Arabidopsis transcriptome by oxidative stress. Plant Physiol 127:159–172

    CAS  PubMed Central  PubMed  Google Scholar 

  • Eldakak M, Milad SIM, Nawar AI, Rohila JS (2013) Proteomics: a biotechnology tool for crop improvement. Front Plant Sci 4:35

    PubMed Central  PubMed  Google Scholar 

  • Fields S, Song O (1989) A novel genetic system to detect protein-protein interactions. Nature 340:245–246

    CAS  PubMed  Google Scholar 

  • Fowler S, Thomashow MF (2002) Arabidopsis transcriptome profiling indicates that multiple regulatory pathways are activated during cold acclimation in addition to the CBF cold response pathway. Plant Cell 14:1675–1690

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gong Q, Li P, Ma S, Rupassara SI, Bohnert HJ (2005) Salinity stress adaptation competence in the extremophile Thellungiella halophila in comparison with its relative Arabidopsis thaliana. Plant J 44:826–839

    CAS  PubMed  Google Scholar 

  • Greene EA et al (2003) Spectrum of chemically induced mutations from a large-scale reverse-genetic screen in Arabidopsis. Genetics 164:731–740

    CAS  PubMed  Google Scholar 

  • Gu R, Fonseca S, Puskas LG, Hackler L Jr, Zvara A, Dudits D, Pais M (2004) Transcript identification and profiling during salt stress and recovery of Populus euphratica. Tree Physiol 24:265–276

    CAS  PubMed  Google Scholar 

  • Gulick PJ, Drouin S, Yu Z, Danyluk J, Poisson G, Monroy AF, Sarhan F (2005) Transcriptome comparison of winter and spring wheat responding to low temperature. Genome 48:913–923

    CAS  PubMed  Google Scholar 

  • Halford NG (2006) From primitive selection to genetic modification, ten thousand years of plant breeding. In: Halford N (ed) Plant biotechnology: current and future applications of genetically modified crops. Wiley, London, pp 3–27

    Google Scholar 

  • Haliloglu K, Baenziger PS (2003) Agrobacterium tumefaciens mediated wheat transformation. Cereal Res Commun 31:9–16

    CAS  Google Scholar 

  • Harbers M, Carninci P (2005) Tag-based approaches for transcriptome research and genome annotation. Nat Methods 2:495–502

    CAS  PubMed  Google Scholar 

  • Hensel G, Valkov V, Middlefell-Williams J, Kumlehn J (2008) Efficient generation of transgenic barley: the way forward to modulate plant-microbe interactions. J Plant Physiol 165:71–82

    CAS  PubMed  Google Scholar 

  • Hiei Y, Ohta S, Komari T, Kumashiro T (1994) Efficient transformation of rice (Oryza sativa L) mediated by Agrobacterium and sequence-analysis of the boundaries of the T-DNA. Plant J 6:271–282

    CAS  PubMed  Google Scholar 

  • Hood EE, Helmer GL, Fraley RT, Chilton MD (1986) The hypervirulence of Agrobacterium tumefaciens A281 is encoded in a region of pTiBo542 outside of T-DNA. J Bacteriol 186:1291–1301

    Google Scholar 

  • Hu T, Metz S, Chay C, Zhou HP, Biest N, Chen G, Cheng M, Feng X, Radionenko M, Lu F, Fry J (2003) Agrobacterium-mediated large-scale transformation of wheat (Triticum aestivum L.) using glyphosate selection. Plant Cell Rep 21:1010–1019

    CAS  PubMed  Google Scholar 

  • Hwang EW, Kim KA, Park SC, Jeong MJ, Byun MO, Kwon HB (2005) Expression profiles of hot pepper (Capsicum annum) genes under cold stress conditions. J Biosci 30:657–667

    CAS  PubMed  Google Scholar 

  • Imin N, Kerim T, Rolfe BG, Weinman JJ (2004) Effect of early cold stress on the maturation of rice anthers. Proteomics 4:1873–1882

    CAS  PubMed  Google Scholar 

  • Inan G, Zhang Q, Li P, Wang Z, Cao Z, Zhang H, Zhang C, Quist TM, Goodwin SM, Zhu J, Shi H, Damsz B, Charbaji T, Gong Q, Ma S, Fredricksen M, Galbraith DW, Jenks MA, Rhodes D, Hasegawa PM, Bohnert HJ, Joly RJ, Bressan RA, Zhu JK (2004) Salt cress. A halophyte and cryophyte Arabidopsis relative model system and its applicability to molecular genetic analyses of growth and development of extremophiles. Plant Physiol 135:1718–1737

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ishida Y, Saito H, Ohta S, Hiei Y, Komari T, Kumashiro T (1996) High efficiency transformation of maize (Zea mays L.) mediated by Agrobacterium tumefaciens. Nat Biotechnol 14(6):745–750

    CAS  PubMed  Google Scholar 

  • Janakiraman V, Steinau M, Mccoy SB, Trick HN (2002) Recent advances in wheat transformation. In Vitro Cell Dev Biol Plant 38:404–414

    CAS  Google Scholar 

  • Jones HD, Doherty A, Wu H (2005) Review of methodologies and a protocol for the Agrobacterium-mediated transformation of wheat. Plant Methods 1:5

    PubMed Central  PubMed  Google Scholar 

  • Kawasaki S, Borchert C, Deyholos M, Wang H, Brazille S, Kawai K, Galbraith D, Bohnert H (2001) Gene expression profiles during the initial phase of salt stress in rice. Plant Cell 13:889–905

    CAS  PubMed Central  PubMed  Google Scholar 

  • Khanna HK, Daggard GE (2003) Agrobacterium tumefaciens mediated transformation of wheat using a superbinary vector and a polyamine-supplemented regeneration medium. Plant Cell Rep 21:429–436

    CAS  PubMed  Google Scholar 

  • Khowaja FS, Price AH (2008) QTL mapping rolling, stomatal conductance and dimension traits of excised leaves in the Bala x Azucena recombinant inbred population of rice. Field Crop Res 106:248–257

    Google Scholar 

  • Khowaja FS, Norton NJ, Courtois B, Price AH (2009) Improved resolution in the position of drought-related QTLs in a single mapping population of rice by meta-analysis. BMC Genomics 10:279. doi:10.1186/1471-2164-10-276

    Google Scholar 

  • Kodzius R, Kojima M, Nishiyori H, Nakamura M, Fukuda S, Tagami M, Sasaki D, Imamura K, Kai C, Harbers M, Hayashizaki Y, Carninci P (2006) CAGE: cap analysis of gene expression. Nat Methods 3:211–222

    CAS  PubMed  Google Scholar 

  • Kreps JA, Wu YJ, Chang HS, Zhu T, Wang X, Harper JF (2002) Transcriptome changes for Arabidopsis in response to salt, osmotic, and cold stress. Plant Physiol 130:2129–2141

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kumlehn J, Serazetdinova L, Hensel G, Becker D, Loerz H (2006) Genetic transformation of barley (Hordeum vulgare L.) via infection of androgenetic pollen cultures with Agrobacterium tumefaciens. Plant Biotechnol J 4:251–261

    CAS  PubMed  Google Scholar 

  • Lan L, Li M, Lai Y, Xu W, Kong Z, Ying K, Han B, Xue Y (2005) Microarray analysis reveals similarities and variations in genetic programs controlling pollination/fertilization and stress responses in rice (Oryza sativa L.). Plant Mol Biol 59:151–164

    CAS  PubMed  Google Scholar 

  • Lee BH, Henderson DA, Zhu JK (2005) The Arabidopsis cold-responsive transcriptome and its regulation by ICE1. Plant Cell 17:3155–3175

    CAS  PubMed Central  PubMed  Google Scholar 

  • Li H, Lovci MT, Kwon YS, Rosenfeld MG, Fu XD, Yeo GW (2008) Determination of tag density required for digital transcriptome analysis: application to an androgen-sensitive prostate cancer model. Proc Natl Acad Sci U S A 105:20179–20184

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lin J, Zhou B, Yang Y, Mei J, Zhao X, Guo X, Huang X, Tang D, Liu X (2009) Piercing and vacuum infiltration of the mature embryo: a simplified method for Agrobacterium-mediated transformation of indica rice. Plant Cell Rep 28:1065–1074

    CAS  PubMed  Google Scholar 

  • Lister R, O’Malley RC, Tonti-Filippini J, Gregory BD, Berry CC, Millar AH, Ecker ER (2008) Highly integrated single base resolution maps of the epigenome of Arabidopsis. Cell 133:523–536

    CAS  PubMed Central  PubMed  Google Scholar 

  • MacBeath G (2002) Protein microarrays and proteomics. Nat Genet 32:526–532

    CAS  PubMed  Google Scholar 

  • Maccaferri M, Sanguineti MC, Corneti S, Ortega JL, Salem MB, Bort J, DeAmbrogio E, del Moral LF, Demontis A, El-Ahmed A, Maalouf F, Machlab H, Martos V, Moragues M, Motawaj J, Nachit M, Nserallah N, Ouabbou H, Royo C, Slama A, Tuberosa R (2008) Quantitative trait loci for grain yield and adaptation of durum wheat (Triticum durum Desf.) across a wide range of water availability. Genetics 178:489–511

    PubMed  Google Scholar 

  • Majoul T, Chahed K, Zamiti E, Ouelhazi L, Ayadi A, Brulfert J (2000) Analysis by two dimensional-electrophoresis of the effect of salt stress on the polypeptide patterns in roots of a salt-tolerant and salt-sensitive cultivar of wheat. Electrophoresis 21:2562–2565

    CAS  PubMed  Google Scholar 

  • Malik ST, Hamid R, Tayyaba Y, Minhas NM (2003) Effects of 2, 4-D on callus induction from mature wheat (Triticum aestivum L.) seeds. Int J Agric Biol 6:156–159

    Google Scholar 

  • Marioni J, Mason C, Mane S, Stephens M, Gilad Y (2008) RNA-seq: an assessment of technical reproducibility and comparison with gene expression arrays. Genome Res 18(9):1509–1517. doi:10.1101/gr.079558.108

    CAS  PubMed  Google Scholar 

  • Marx J (2000) Interfering with gene expression. Sciences 288:1370–1372

    CAS  Google Scholar 

  • McCallum CM, Comai L, Greene EA, Henikoff S (2000) Targeted screening for induced mutations. Nat Biotechnol 18(4):455–457

    CAS  PubMed  Google Scholar 

  • McGinnis K, Chandler V, Cone K, Kaeppler H, Kaeppler S, Kerschen A, Pikaard C, Richards E, Sidorenko L, Smith T, Springer N, Wulan T (2005) Transgene-induced RNA interference as a tool for plant functional genomics. Methods Enzymol 392:1–24

    CAS  PubMed  Google Scholar 

  • Miki D, Itoch R, Shimamoto K (2005) RNA silencing of single and multiple members in a gene family of rice. Plant Physiol 138:1903–1913

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mochida K, Yamazaki Y, Ogihara Y (2004) Discrimination of homologous gene expression in hexaploid wheat by SNP analysis of contigs grouped from a large number of expressed sequence tags. Mol Genet Genome 270:371–377

    Google Scholar 

  • Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B (2008) Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 5:621–628

    CAS  PubMed  Google Scholar 

  • Nagalakshmi U, Wang Z, Waern K, Shou C, Raha D, Gerstain M, Snyder M (2008) The transcriptional landscape of the yeast genome defined by RNA sequencing. Sciences 320:1344–1349

    CAS  Google Scholar 

  • Nakamura M, Carninci P (2004) [Cap analysis gene expression: CAGE]. Tanpakushitsu Kakusan Koso 49:2688–2693 (in Japanese)

    CAS  PubMed  Google Scholar 

  • O’Farrell PH (1975) High resolution 2-dimensional electrophoresis of proteins. J Biol Chem 250:4007–4021

    PubMed Central  PubMed  Google Scholar 

  • Oh SJ, Song SI, Kim YS, Jang HJ, Kim SY, Kim M, Kim YK, Nahm BH, Kim JK (2005) Arabidopsis CBF3/DREB1A and ABF3 in transgenic rice increased tolerance to abiotic stress without stunting growth. Plant Physiol 138:341–351

    CAS  PubMed Central  PubMed  Google Scholar 

  • Oztur ZN, Talame V, Deyholos M, Michalowski CB, Galbraith DW, Gozukirmizi N, Tuberosa R, Bohnert HJ (2002) Monitoring large-scale changes in transcript abundance in drought- and salt-stressed barley. Plant Mol Biol 48:551–573

    PubMed  Google Scholar 

  • Pan Q, Shai O, Lee LJ, Frey BJ, Blencowe BJ (2008) Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing. Nat Genet 40:1413–1415

    CAS  PubMed  Google Scholar 

  • Parker R, Flowers TJ, Moore AL, Harpham NJV (2006) An accurate and reproducible method for proteome profiling of the effects of salt stress in the rice leaf lamina. J Exp Bot 57:1109–1118

    CAS  PubMed  Google Scholar 

  • Parry MAJ, Reynolds MP (2007) Improving resource use efficiency. Ann Appl Biol 151:133–135

    Google Scholar 

  • Parry MAJ, Flexas J, Medrano H (2005) Prospects for crop production under drought: research priorities and future directions. Ann Appl Biol 147:211–226

    Google Scholar 

  • Paterson AH, Bowers JE, Bruggmann R, Dubchak I, Grimwood J, Gundlach H, Haberer G, Hellsten U, Mitros T, Poliakov A, Schmutz J, Spannagl M, Tang HB, Wang XY, Wicker T, Bharti AK, Chapman J, Feltus FA, Gowik U, Grigoriev IV, Lyons E, Maher CA, Martis M, Narechania A, Otillar RP, Penning BW, Salamov AA, Wang Y, Zhang LF, Carpita NC, Freeling M, Gingle AR, Hash CT, Keller B, Klein P, Kresovich S, McCann MC, Ming R, Peterson DG, Mehboob-ur R, Ware D, Westhoff P, Mayer KFX, Messing J, Rokhsar DS (2009) The Sorghum bicolor genome and the diversification of grasses. Nature 457:551–556

    CAS  PubMed  Google Scholar 

  • Peiffer JA, Kaushik S, Sakai H, Arteaga-Vazquez A, Sanchez-Leon N, Ghazal H, Vielle-Calzada JP, Meyers BC (2008) A spatial dissection of the Arabidopsis floral transcriptome by MPSS. BMC Plant Biol 8:43

    PubMed Central  PubMed  Google Scholar 

  • Pérez-Clémente RM, Vives V, Zandalinas SI, Lopèz-Climent MF, Munoz V, Cadenas AG (2013) Biotechnological approaches to study plant responses to stress. Biomed Res Int 2013:654120

    PubMed Central  PubMed  Google Scholar 

  • Rabbani MA, Maruyama K, Abe H, Khan MA, Katsura K, Ito Y, Yoshiwara K, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2003) Monitoring expression profiles of rice (Oryza sativa L.) genes under cold, drought and high-salinity stresses, and ABA application using both cDNA microarray and RNA gel blot analyses. Plant Physiol 133:1755–1767

    CAS  PubMed Central  PubMed  Google Scholar 

  • Reinartz J, Bruyns E, Lin JZ, Burcham T, Brenner S, Bowen B, Kramer M, Woychik R (2002) Massively parallel signature sequencing (MPSS) as a tool for in-depth quantitative gene expression profiling in all organisms. Brief Funct Genomic Proteomic 1:95–104

    CAS  PubMed  Google Scholar 

  • Renaut J, Hausman JF, Wisniewski ME (2006) Proteomics and low temperature studies: bridging the gap between gene expression and metabolism. Physiol Plant 126:97–109

    CAS  Google Scholar 

  • Rensink WA, Lobst S, Hart A, Stegalkina S, Liu J, Buell CR (2005) Gene expression profiling of potato responses to cold, heat, and salt stress. Funct Integr Genomics 5:201–207

    CAS  PubMed  Google Scholar 

  • Richards A, Rebetzke GJ, Watt M, Saad RB, Zouari N, Ramdhan WB (2010) Breeding for improved water productivity in temperate cereals: phenotyping, quantitative trait loci, markers and the selection environment. Funct Plant Biol 37:85–97

    Google Scholar 

  • Richmond T, Somerville S (2000) Chasing the dream: plant EST microarrays. Curr Opin Plant Biol 3:108–116

    CAS  PubMed  Google Scholar 

  • Sakata K, Nagamura Y, Numa H, Antonio BA, Nagasaki H, Idonuma A, Watanabe W, Shimizu Y, Horiuchi I, Matsumoto T, Sasaki T, Higo K (2002) RiceGAAS: an automated annotation system and database for rice genome sequence. Nucleic Acids Res 30:98–102

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sanford JC (1988) The biolistic process. Trends Biotechnol 6:299–302

    CAS  Google Scholar 

  • Seki M, Narusaka M, Abe H, Kasuga M, Yamaguchi-Shinozaki K, Carninci P, Hayashizaki Y, Shinozaki K (2001) Monitoring the expression pattern of 1300 Arabidopsis genes under drought and cold stresses using a full-length cDNA microarray. Plant Cell 13:61–72

    CAS  PubMed Central  PubMed  Google Scholar 

  • Seki M, Narusaka M, Kamiya A, Ishida J, Satou M, Sakurai T, Nakajima M, Enju A, Akiyama K, Oono Y, Muramatsu M, Hayashizaki Y, Kawai J, Carninci P, Itoh M, Ishii Y, Arakawa T, Shibata K, Shinagawa A, Shinozaki K (2002) Functional annotation of a full-length Arabidopsis cDNA collection. Science 296:141–145

    PubMed  Google Scholar 

  • Seki M, Satou M, Sakurai T, Akiyama K, Iida K, Ishida J, Nakajima M, Enju A, Narusaka M, Fujita M, Oono Y, Kamei A, Yamaguchi-Shinozaki K, Shinozaki K (2004) RIKEN Arabidopsis full-length (RAFL) cDNA and its applications for expression profiling under abiotic stress conditions. J Exp Bot 55:213–223

    CAS  PubMed  Google Scholar 

  • Shewry P (2007) Improving the protein content and composition of cereal grain. J Cereal Sci 46:239–250

    CAS  Google Scholar 

  • Shiraki T, Kondo S, Katayama S, Waki K, Kasukawa T, Kawaji H, Kodzius R, Watahiki A, Nakamura M, Arakawa T, Fukuda S, Sasaki D, Podhajska A, Harbers M, Kawai J, Carninci P, Hayashizaki Y (2003) Cap analysis gene expression for high-throughput analysis of transcriptional starting point and identification of promoter usage. Proc Natl Acad Sci U S A 100:15776–15781

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shrawat AK, Lorz H (2006) Agrobacterium-mediated transformation of cereals: a promising approach crossing barriers. Plant Biotechnol J 4:575–603

    CAS  PubMed  Google Scholar 

  • Slade AJ, Fuerstenberg SI, Loeffler D, Steine MN, Faciotti D (2005) A reverse genetic, nontransgenic approach to wheat crop improvement by TILLING. Nat Biotechnol 23:75–81

    CAS  PubMed  Google Scholar 

  • Snape JW (1998) Golden calves or white elephants? Biotechnologies for wheat improvement. Euphytica 100:207–217

    Google Scholar 

  • Soneson C, Delorenzi M (2013) A comparison of methods for differential expression analysis of RNA-seq data. BMC Bioinformatics 14(1):91

    PubMed Central  PubMed  Google Scholar 

  • Soon WW, Hariharan M, Snyder M (2013) High throughput sequencing for biology and medicine. Mol Syst Biol 9:640

    PubMed Central  PubMed  Google Scholar 

  • Supartana P, Shimizu T, Shioiri H, Nogawa M, Nozue M, Kojima M (2005) Development of simple and efficient in planta transformation method for rice (Oryza sativa L.) using Agrobacterium tumefaciens. J Biosci Bioeng 100:391–397

    CAS  PubMed  Google Scholar 

  • Taji T, Seki M, Satou M, Sakurai T, Kobayashi M, Ishiyama K, Narusaka Y, Narusaka M, Zhu JK, Shinozaki K (2004) Comparative genomics in salt tolerance between Arabidopsis and Arabidopsis-related halophyte salt cress using Arabidopsis microarray. Plant Physiol 135:1697–1709

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tamás C, Kisgyörgy BN, Rakszegi M, Wilkinson MD, Yang MS, Láng L, Tamás L, Bedő Z (2009) Transgenic approach to improve wheat (Triticum aestivum L.) nutritional quality. Plant Cell Rep 28:1085–1094

    PubMed  Google Scholar 

  • Tardieu F (2013) Plant response to environmental conditions: assessing potential production, water demand, and negative effects of water deficit. Front Physiol 4:17

    CAS  PubMed Central  PubMed  Google Scholar 

  • Taylor NL, Heazlewood JL, Day DA, Millar AH (2005) Differential impact of environmental stresses on the pea mitochondrial proteome. Mol Cell Proteomics 4:1122–1133

    CAS  PubMed  Google Scholar 

  • Till B, Reynolds S, Weil C, Springer N, Burtner C, Young K, Bowers E, Codomo C, Enns L, Odden A, Greene E, Cormai L, Henikoff S (2004) Discovery of induced point mutations in maize genes by TILLING. BMC Plant Biol 4:12

    PubMed Central  PubMed  Google Scholar 

  • Till BJ, Zerr T, Comai L, Henikoff S (2006) A protocol for TILLING and ecotilling in plants and animals. Nat Protoc 1(5):2465–2477

    CAS  PubMed  Google Scholar 

  • Tingay S, McElroy D, Kalla R, Fieg S, Wang MB, Thornton S, Brettell R (1997) Agrobacterium tumefaciens-mediated barley transformation. Plant J 11:1369–1376

    CAS  Google Scholar 

  • Travella S, Klimm TE, Keller B (2006) RNA interference-based gene silencing as an efficient tool for functional genomics in hexaploid bread wheat. Plant Physiol 142:6–20

    CAS  PubMed Central  PubMed  Google Scholar 

  • Unlu M, Morgan ME, Minden JS (1997) Difference gel electrophoresis: a single gel method for detecting changes in protein extracts. Electrophoresis 18:2071–2077

    CAS  PubMed  Google Scholar 

  • Vasil IK (2007) Molecular genetic improvement of cereals: transgenic wheat (Triticum aestivum L.). Plant Cell Rep 26:1133–1154

    CAS  PubMed  Google Scholar 

  • Velculescu VE, Zhang L, Vogelstein B, Kinzler KW (1995) Serial analysis of gene expression. Sciences 270:484–487

    CAS  Google Scholar 

  • Wang H, Miyazaki S, Kawai K, Deyholos M, Galbraith DW, Bohnert HJ (2003) Temporal progression of gene expression responses to salt shock in maize roots. Plant Mol Biol 52:873–891

    CAS  PubMed  Google Scholar 

  • Wang ET, Sandberg R, Luo S, Khrebtukova I, Zhang L, Mayr C, Kingsmore SF, Schroth GP, Burge CB (2008a) Alternative isoform regulation in human tissue transcriptomes. Nature 456:470–476

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wang MC, Peng ZY, Li CL, Li F, Liu C, Xia GM (2008b) Proteomic analysis on a high salt tolerance introgression stain of Triticum aestivum/Thinopyrum ponticum. Proteomics 8:1470–1489

    CAS  PubMed  Google Scholar 

  • Wang D, Pan Y, Zhao X, Zhu L, Fu B, Li Z (2011) Genome-wide temporal-spatial gene expression profiling of drought responsiveness in rice. BMC Genomics 12:149

    PubMed Central  PubMed  Google Scholar 

  • Watkinson JI, Sioson AA, Vasquez-Robinet C, Shukla M, Kumar D, Ellis M, Heath LS, Ramakrishnan N, Chevone B, Watson LT, Zyl LV, Egertsdotter U, Sederoff RR, Grene R (2003) Photosynthetic acclimation is reflected in specific patterns of gene expression in drought stressed loblolly pine. Plant Physiol 133:1702–1716

    CAS  PubMed Central  PubMed  Google Scholar 

  • Weir B, Gu X, Wang MB, Upadhyaya N, Elliott AR, Brettell RIS (2001) Agrobacterium tumefaciens-mediated transformation of wheat using suspension cells as a model system and green fluorescent protein as a visual marker. Aust J Plant Physiol 28:807–818

    CAS  Google Scholar 

  • Wilhelm BT, Marguerate S, Watt S, Schubert F, Wood V, Goodhead I, Penkett CJ, Rogers J, Bahler J (2008) Dynamic repertoire of a eukaryotic transcriptome surveyed at single-nucleotide resolution. Nature 453:1239–1243

    CAS  PubMed  Google Scholar 

  • Wilkins MR, Pasquali C, Appel RD, Ou K, Golaz O, Sanchez JC, Yan JX, Gooley AA, Hughes G, Humphery-Smith I, Williams KL, Hochstrasser DF (1996) From proteins to proteomes: large scale identification by two-dimensional electrophoresis and amino acid analysis. Biotechnology 14:61–65

    CAS  PubMed  Google Scholar 

  • Wong CE, Li Y, Labbe A, Guevara D, Nuin P, Whitty B, Diaz C, Golding GB, Gray GR, Weretilnyk EA, Griffith M, Moffatt BA (2006) Transcriptional profiling implicates novel interactions between abiotic stress and hormonal responses in Thellungiella, a close relative of Arabidopsis. Plant Physiol 140:1437–1450

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wu H, Sparks C, Amoah B, Jones HD (2003) Factors influencing successful Agrobacterium-mediated genetic transformation of wheat. Plant Cell Rep 21:659–668

    CAS  PubMed  Google Scholar 

  • Yan S, Tang Z, Su W, Sun W (2005) Proteomic analysis of salt stress-responsive proteins in rice roots. Proteomics 5:235–244

    CAS  PubMed  Google Scholar 

  • Yu LX, Setter TL (2003) Comparative transcriptional profiling of placenta and endosperm in developing maize kernels in response to water deficit. Plant Physiol 131:568–582

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zale JM, Agarwal S, Loar S, Steber M (2009) Evidence for stable transformation of wheat by floral dip in Agrobacterium tumefaciens. Plant Cell Rep 28:903–913

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang H, Sreenivasulu N, Weschke W, Stein N, Rudd S, Radchuk V, Potokina E, Scholz U, Schweizer P, Zierold U, Langridge P, Varshney RK, Wobus U, Graner A (2004) Large-scale analysis of the barley transcriptome based on expressed sequence tags. Plant J 40:276–290

    PubMed  Google Scholar 

  • Zhang L, Tian LH, Zhao JF, Song Y, Zhang CJ, Guo Y (2009) Identification of an apoplastic protein involved in the initial phase of salt stress response in rice root by two-dimensional electrophoresis. Plant Physiol 149:916–928

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zivy M, deVienne D (2000) Proteomics: a link between genomics, genetics and physiology. Plant Mol Biol 44:575–580

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. Parvaiz Ahmed and Dr. Mohd Rafiq Wani from the Department of Botany, Govt. Degree College (Boys), Anantnag, Jammu and Kashmir, India, for their invitation to contribute to this volume. This chapter was supported by grants from the Ministry of Higher Education and Scientific Research, Tunisia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Faiçal Brini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Brini, F., Masmoudi, K. (2014). Biotechnology for Drought and Salinity Tolerance of Crops. In: Ahmad, P., Wani, M. (eds) Physiological Mechanisms and Adaptation Strategies in Plants Under Changing Environment. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8591-9_5

Download citation

Publish with us

Policies and ethics