Skip to main content

Humic Substances and Plant Defense Metabolism

  • Chapter
  • First Online:

Abstract

Humic substances (HS) affect most plant metabolic processes. Regardless of their source, HS help regulate enzymatic systems related to primary, secondary, and defense metabolisms in response to environmental stress. Morphologically, the HS–plant interaction results in increased root length and the emanation of lateral roots. These morphological changes occur in response to complex regulatory and stress response processes activated by the application of HS and similar chemical fractions. Given that the roots are the main plant organs that interact with HS, HS–root interaction mechanisms are one of the most important topics in HS–plant research. Specifically, there is a known biochemical relationship between humic compounds and major plant metabolic processes. New findings about the modes of metabolite action in plants have increased our understanding of how HS help to optimize plant metabolism. Advanced technologies, such as large-scale and spectroscopy, have also increased our understanding of the modes of action of HS. The application of techniques such as amplified fragment length polymorphism (AFLP) and microarray analysis in study of HS-treated plants has demonstrated that approximately 6.1–9 % of differentially expressed genes correspond to metabolic pathways that are associated with defense mechanisms in response to stimuli. These results suggest that HS induce plant adaptive responses to environmental stress. In this study, we discuss how HS contribute to improved plant performance through complex metabolic mechanisms. We apply new findings about the modes of action of metabolites related to antioxidant mechanisms to understand HS modes of action and examine HS effects in plants by using spectroscopic techniques to study root interactions. We also propose a framework for investigating the use of HS in agriculture to improve the growth of food plants grown in high-stress environments.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aguiar NO, Olivares FL, Novotny EH, Dobbss LB, Balmori DM, Santos-Júnior LG, Chagas JG, Façanha AR, Canellas LP (2013) Bioactivity of humic acids isolated from vermicomposts at different maturation stages. Plant Soil 362:161–174

    Article  CAS  Google Scholar 

  • Alvarez-Puebla RA, Valenzuela-Calahorro C, Garrido JJ (2004) Cu (II) retention on a humic substance. J Colloid Interface Sci 270:47–55

    Article  CAS  PubMed  Google Scholar 

  • Amir S, Jouraiphy A, Meddich A, Gharous M, Winterto P, Hafidi M (2010) Structural study of humic acids during composting of activated sludge-green waste: elemental analysis, FTIR and 13C NMR. J Hazard Mater 177:524–529

    Article  CAS  PubMed  Google Scholar 

  • Asli S, Neumann PM (2010) Rhizosphere humic acid interacts with root cell walls to reduce hydraulic conductivity and plant development. Plant Soil 336:313–322

    Article  CAS  Google Scholar 

  • Aydin A, Kant C, Turan M (2012) Humic acid application alleviates salinity stress of bean (Phaseolus vulgaris L.) plants decreasing membrane leakage. Afr J Agric Res 7:1073–1086

    Google Scholar 

  • Baddi GA, Hafidi M, Cegarra J, Alburquerque JA, González J, Gilard V, Revel JC (2004) Characterization of fulvic acids by elemental and spectroscopic (FTIR and 13C-NMR) analyses during composting of olive mill wastes plus straw. Bioresour Technol 93:285–290

    Article  Google Scholar 

  • Berner JM, Van der Westhuizen AJ (2010) Inhibition of xanthine oxidase activity results in the inhibition of Russian wheat aphid-induced defense enzymes. J Chem Ecol 36:1375–1380

    Article  CAS  PubMed  Google Scholar 

  • Blomster T, Salojärvi J, Sipari N, Brosché M, Ahlfors R, Keinänen M, Overmyer K, Kangasjärvi J (2011) Apoplastic reactive oxygen species transiently decrease auxin signaling and cause stress-induced morphogenic response in Arabidopsis. Plant Physiol 157:1866–1883

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Canellas LP, Piccolo A, Dobbss LB, Spaccini R, Olivares FL, Zandonadi DB, Façanha AR (2010) Chemical composition and bioactivity properties of size-fractions separated from a vermicompost humic acid. Chemosphere 78:457–466

    Article  CAS  PubMed  Google Scholar 

  • Canellas LP, Dobbss LB, Oliveira AL, Chagas JG, Aguiar NO, Rumjanek VM, Novotny EH, Olivares FL, Spaccini R, Piccolo A (2012) Chemical properties of humic matter as related to induction of plant lateral roots. Eur J Soil Sci 63:315–324

    Article  CAS  Google Scholar 

  • Cordeiro FC, Santa-Catarina C, Silveira V, de Souza SR (2011) Humic acid effect on catalase activity and the generation of reactive oxygen species in corn (Zea Mays L). Biosci Biotechnol Biochem 75:70–74

    Article  CAS  PubMed  Google Scholar 

  • Corpas FJ, Palma JM, Sandalio LM, Valderrama R, Barroso JB, del Río LA (2008) Peroxisomal xanthine oxidoreductase: characterization of the enzyme from pea (Pisum sativum L.) leaves. J Plant Physiol 165:1319–1330

    Article  CAS  PubMed  Google Scholar 

  • De Tullio MC, Jiang K, Feldman LJ (2010) Redox regulation of root apical meristem organization: connecting root development to its environment. Plant Physiol Biochem 48:328–336

    Article  PubMed  Google Scholar 

  • Del Valle GH, Hernández GO, Izquierdo FG, Fortes NA (2012) Influence of the no till and the liquid extract of vermicompost in indicators and indexes growth in common bean (Phaseolus vulgaris L.) cv. cc-25-9. Rev Cie Téc Agr 21:86–90

    Google Scholar 

  • Demidchik V, Shabala SN, Davies JM (2007) Spatial variation in H2O2 response of Arabidopsis thaliana root epidermal Ca2+ flux and plasma membrane Ca2+ channels. Plant J 49:377–386

    Article  CAS  PubMed  Google Scholar 

  • Demidchik V, Shang Z, Shin R, Thompson E, Rubio L, Laohavisit A, Mortimer JC, Chivasa S, Slabas AR, Glover BJ, Schachtman DP, Shabala SN, Davies JM (2009) Plant extracellular ATP signalling by plasma membrane NADPH oxidase and Ca2+ channels. Plant J 58:903–913

    Article  CAS  PubMed  Google Scholar 

  • Dobbss LB, Rumjaneck VM, Baldotto AM, Velloso ACX, Canellas LP (2009) Caracterização química e espectroscópica de ácidos húmicos e fúlvicos isolados da camada superficial de latossolos brasileiros. R Bras Ci Solo 33:51–63

    Article  CAS  Google Scholar 

  • Dobbss L, Canellas LP, Olivares FL, Aguiar NO, Peres LEP, Spaccini R, Piccolo A (2010) Bioactivity of chemically transformed humic matter from vermicompost on plant root growth. J Agric Food Chem 127:1–10

    Google Scholar 

  • Ferrari E, Francioso O, Nardi S, Saladini M, dal Ferro N, Morari F (2011) DRIFT and HR MAS NMR characterization of humic substances from a soil treated with different organic and mineral fertilizers. J Mol Struct 998:216–224

    Article  CAS  Google Scholar 

  • Ferrer JL, Austin MB, Stewart C Jr, Noel JP (2008) Structure and function of enzymes involved in the biosynthesis of phenylpropanoids. Plant Physiol Biochem 46:356–370

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Filella M, Town RM (2001) Heterogeneity and lability of Pb(II) complexation by humic substances: practical interpretation tools. Fresenius J Anal Chem 370:413–418

    Article  CAS  PubMed  Google Scholar 

  • Foreman J, Demidchik V, Bothwell JHF, Mylona P, Henk M, Torresk MA, Linstead P, Costa S, Brownlee C, Jonesk JDG, Davies JM, Dolan L (2003) Reactive oxygen species produced by NADPH oxidase regulate plant cell growth. Nature 422:442–446

    Article  CAS  PubMed  Google Scholar 

  • García AC, Berbara RLL, Farias LP, Izquierdo FG, Hernández OL, Campos RH, Castro RN (2012a) Humic acids of vermicompost as an ecological pathway to increase resistance of rice seedlings to water stress. Afr J Biotechnol 11:3125–3134

    Google Scholar 

  • García AC, Santos LA, Izquierdo FG, Sperandio MVL, Castro RN, Berbara RLL (2012b) Vermicompost humic acids as an ecological pathway to protect rice plant against oxidative stress. Ecol Eng 47:203–208

    Article  Google Scholar 

  • Gerke J (1994) Aluminum complexation by humic substances and aluminum species in the soil solution. Geoderma 63:165–175

    Article  CAS  Google Scholar 

  • Ghabbour EA, Davies G (2001) The Royal Society of Chemistry, Thomas Graham House, Science Park, Milton Road, Cambridge CB4 OW, UK Registered Charity No. 207890

    Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930

    Article  CAS  PubMed  Google Scholar 

  • Gondar D, Lopez R, Fiol S, Antelo JM, Arce F (2005) Characterization and acid–base properties of fulvic and humic acids isolated from two horizons of an ombrotrophic peat bog. Geoderma 126:367–374

    Article  CAS  Google Scholar 

  • Haghighi M, Kafi M, Fang P (2012) Photosynthetic activity and N metabolism of lettuce as affected by humic acid. J Veg Sci 18:182–189

    Google Scholar 

  • Hernández R, García A, Portuondo L, Muñiz S, Berbara R, Izquierdo F (2012) Protección antioxidativa de los ácidos húmicos extraídos de vermicompost en arroz (Oryza sativa L.) var. IACuba30. Rev Protección Veg 27:102–110

    Google Scholar 

  • Huang AX, Sheb XP, Zhang YY, Zhao JL (2013) Cytosolic acidification precedes nitric oxide removal during inhibition of ABA induced stomatal closure by fusicoccin. Russ J Plant Physiol 60:60–68

    Article  CAS  Google Scholar 

  • Iglesias A, Lopez R, Fiol S, Antelo JM, Arce F (2003) Analysis of copper and calcium–fulvic acid complexation and competition effects. Water Res 37:3749–3755

    Article  CAS  PubMed  Google Scholar 

  • Irving H, Williams RJP (1953) The stability of transition-metal complexes. J Chem Soc 3:3192–3210

    Article  Google Scholar 

  • Jannin L, Arkoun M, Ourry A, Laîné P, Goux D, Garnica M, Fuentes M, San Francisco S, Baigorri R, Cruz F, Houdusse F, Garcia-Mina JM, Yvin JC, Etienne P (2012) Microarray analysis of humic acid effects on Brassica napus growth: involvement of N, C and S metabolisms. Plant Soil 359:297–319

    Article  CAS  Google Scholar 

  • Jerzykiewicz M (2004) Formation of new radicals in humic acids upon interaction Pb (II) ions. Geoderma 122:305–309

    Article  CAS  Google Scholar 

  • Kurusu T, Kuchitsu K, Nakano M, Nakayama Y, Iida H (2013) Plant mechanosensing and Ca2+ transport. Trends Plant Sci 18(4):227–233

    Article  CAS  PubMed  Google Scholar 

  • Kwak JM, Mori IC, Pei ZM, Leonhardt N, Torres MA, Dangl JL, Bloom RE, Bodde S, Jones JD, Schroeder JI (2003) NADPH oxidase AtrbohD and AtrbohF genes function in ROS-dependent ABA signaling in Arabidopsis. EMBO J 22:2623–2633

    Article  CAS  PubMed  Google Scholar 

  • Li G-W, Peng Y-H, Yu X, Zhang M-H, Cai W-M, Sun W-N, Su W-A (2008) Transport functions and expression analysis of vacuolar membrane aquaporins in response to various stresses in rice. J Plant Physiol 165:1879–1888

    Article  CAS  PubMed  Google Scholar 

  • Li X, Xing M, Yang J, Huang Z (2011) Compositional and functional features of humic acid-like fractions from vermicomposting of sewage sludge and cow dung. J Hazard Mater 185:740–748

    Article  CAS  PubMed  Google Scholar 

  • Lopez F, Bousser A, Sissoëff I, Gaspar M, Lachaise B (2003) Diurnal regulation of water transport and aquaporin gene expression in maize roots: contribution of PIP2 proteins. Plant Cell Physiol 44:1384–1395

    Article  CAS  PubMed  Google Scholar 

  • Loque D, Ludewig U, Yuan L, von Wiren N (2005) Tonoplast intrinsic proteins AtTIP2;1 and AtTIP2;3 facilitate NH3 transport into the vacuole. Plant Physiol 137:671–680

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Marino D, Dunand C, Puppo A, Pauly N (2012) A burst of plant NADPH oxidases. Trends Plant Sci 17:9–15

    Article  CAS  PubMed  Google Scholar 

  • Miller G, Schlauch K, Tam R, Cortes D, Torres MA, Shulaev V, Dangl JL, Mittler R (2009) The plant NADPH oxidase RBOHD mediates rapid systemic signaling in response to diverse stimuli. Sci Signal 84:45

    Google Scholar 

  • Miller G, Suzuki N, Ciftci-Yilmaz S, Mittler R (2010) Reactive oxygen species homeostasis and signaling during drought and salinity stresses. Plant Cell Environ 33:453–467

    Article  CAS  PubMed  Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410

    Article  CAS  PubMed  Google Scholar 

  • Mittler R, Vanderauwera S, Gollery M, Van BF (2004) Reactive oxygen gene network of plants. Trends Plant Sci 9:490–498

    Article  CAS  PubMed  Google Scholar 

  • Mittler R, Vanderauwera S, Suzuki N, Miller G, Tognetti VB, Vandepoele K, Gollery M, Shulaev V, Breusegem FV (2011) ROS signaling: the new wave? Trends Plant Sci 16:300–309

    Article  CAS  PubMed  Google Scholar 

  • Mora V, Bacaicoa E, Zamarreño AM, Aguirre E, Garnica M, Fuentes M, García-Mina JM (2010) Action of humic acid on promotion of cucumber shoot growth involves nitrate-related changes associated with the root-to-shoot distribution of cytokinins, polyamines and mineral nutrients. J Plant Physiol 167:633–642

    Article  CAS  PubMed  Google Scholar 

  • Mori IC, Schroeder JI (2004) Reactive oxygen species activation of plant Ca2+ channels. A signaling mechanism in polar growth, hormone transduction, stress signaling, and hypothetically mechanotransduction. Plant Physiol 135:702–708

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Muscolo A, Sidari M, Attiná E, Francioso O, Tugnoli V, Nardi S (2007) Biological activity of humic substances is related to their chemical structure. Soil Sci Soc Am J 71:75–85

    Article  CAS  Google Scholar 

  • Nardi S, Pizzeghello D, Muscolo A, Vianello A (2002) Physiological effects of humic substances on higher plants. Soil Biol Biochem 34:1527–1536

    Article  CAS  Google Scholar 

  • Nardi S, Muscolo A, Vaccaroa S, Baiano S, Spaccini R, Piccolo A (2007) Relationship between molecular characteristics of soil humic fractions and glycolytic pathway and krebs cycle in maize seedlings. Soil Biol Biochem 39:3138–3146

    Article  CAS  Google Scholar 

  • Nebbioso A, Piccolo A (2012) Advances in humeomics: enhanced structural identification of humic molecules after size fractionation of a soil humic acid. Anal Chim Acta 720:77–79

    Article  CAS  PubMed  Google Scholar 

  • Pérez JJR, Izquierdo FG, Escobar IMR, Mayoral JAL (2009) Liquid casting effect on tomato yields in saline soils of Cuban east region. Centro Agrícola 36:57–61

    Google Scholar 

  • Pérez JJR, Izquierdo FG, Escobar IMR, Ruisánchez Y, Mayoral JAL, Amador BM, Espinoza FH, Fabré TB, Amador CA, Silvera CMO, Morales YA, Milanés JYR (2011) Efectos del humus líquido sobre algunos parámetros de calidad interna en frutos de tomate cultivados en condiciones de estrés salino [Effects of liquid humus on some parameters of internal quality of tomato fruits grown under salt stress conditions]. Centro Agrícola 38:57–61

    Google Scholar 

  • Piccolo A, Stevenson FJ (1982) Infrared spectra of Cu2+, Pb2+ and Ca2+ complexes of soil humic substances. Geoderma 27:195–208

    Article  CAS  Google Scholar 

  • Plaza C, D’Orazio V, Senesi N (2005) Copper (II) complexation of humic acids from the first generation of EUROSOILS by total luminescence spectroscopy. Geoderma 125:177–186

    Article  CAS  Google Scholar 

  • Polle A (2001) Dissecting the superoxide dismutase–ascorbate peroxidase–glutathione pathway in chloroplasts by metabolic modeling. Computer simulations as a step towards flux analysis. Plant Physiol 126:445–462

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Russell L, Stokes AR, Macdonald H, Muscolo A, Nardi S (2006) Stomatal responses to humic substances and auxin are sensitive to inhibitors of phospholipase A2. Plant Soil 283:175–185

    Article  CAS  Google Scholar 

  • Šamaj J, Baluška F, Menzel D (2004) New signalling molecules regulating root hair tip growth. Trends Plant Sci 9:217–220

    Article  PubMed  Google Scholar 

  • Schiavon M, Pizzeghello D, Muscolo A, Vaccaro S, Francioso O, Nardi S (2010) High molecular size humic substances enhance phenylpropanoid metabolism in maize (Zea mays L.). J Chem Ecol 36:662–669

    Article  CAS  PubMed  Google Scholar 

  • Schnitzer M (1978) Humic substances: chemistry and reactions. In: Schnitzer M, Khan SU (eds) Soil organic matter. Elsevier, Amsterdam

    Google Scholar 

  • Schopfer P, Liszkay A, Bechtold M, Frahry G, Wagner A (2002) Evidence that hydroxyl radicals mediate auxin-induced extension growth. Planta 214:821–828

    Article  CAS  PubMed  Google Scholar 

  • Senesi N, Sposito G, Martin JP (1986) Copper (ii) and iron (iii) complexation by soil humic acids: an IR and ESR study. Sci Total Environ 55:351–362

    Article  CAS  Google Scholar 

  • Siddiqui MH, Al-Whaibi MH, Basalah MO (2011) Role of nitric oxide in tolerance of plants to abiotic stress. Protoplasma 248:447–455

    Article  CAS  PubMed  Google Scholar 

  • Silvia-Matos RRS, Cavalcante IHL, Júnior GBS, Albano FG (2012) Foliar spray of humic substances on seedling production of Watermelon cv. Crimson Sweet. J Agron 11:60–64

    Article  Google Scholar 

  • Singh R, Gupta RK, Patil RT, Sharma RR, Asrey R, Kumar A, Jangra KK (2010) Sequential foliar application of vermicompost leachates improves marketable fruit yield and quality of strawberry (Fragaria x ananassa Duch.). Sci Hortic 124:34–39

    Article  CAS  Google Scholar 

  • Suzuki N, Koussevitzky S, Mittler R, Miller G (2012) ROS and redox signalling in the response of plants to abiotic stress. Plant Cell Environ 35:259–270

    Article  CAS  PubMed  Google Scholar 

  • Takeda S, Gapper C, Kaya H, Bell E, Kuchitsu K, Dolan L (2008) Local positive feedback regulation determines cell shape in root hair cells. Science 319:1241–1244

    Article  CAS  PubMed  Google Scholar 

  • Tao Z-Y, Zhang J, Zhai J-J (1999) Characterization and differentiation of humic acids and fulvic acids in soils from various regions of China by nuclear magnetic resonance spectroscopy. Anal Chim Acta 395:199–203

    Article  CAS  Google Scholar 

  • Tejada M, Gonzalez JL, Hernandez MT, Garcia C (2008) Agricultural use of leachates obtained from two different vermicomposting processes. Bioresour Technol 99:6228–6232

    Article  CAS  PubMed  Google Scholar 

  • Terry E, Díaz de Armas MM, Padrón JR, Tejeda T, Zea ME, Camacho-Ferre F (2012) Effects of different bioactive products used as growth stimulators in lettuce crops (Lactuca sativa L.). J Food Agric Environ 10:386–389

    CAS  Google Scholar 

  • Tognetti VB, Mühlenbock P, van Breusegem F (2012) Stress homeostasis the redox and auxin perspective. Plant Cell Environ 35:321–333

    Article  CAS  PubMed  Google Scholar 

  • Trevisan S, Botton A, Vaccaro S, Vezzaro A, Quaggiotti S, Nardi S (2011) Humic substances affect Arabidopsis physiology by altering the expression of genes involved in primary metabolism, growth and development. Environ Exp Bot 74:45–55

    Article  CAS  Google Scholar 

  • Tsukagoshi H, Busch W, Benfey PN (2010) Transcriptional regulation of ROS controls transition from proliferation to differentiation in the root. Cell 143:606–616

    Article  CAS  PubMed  Google Scholar 

  • Vasconcelos FAC, Zhang X, Ervin EH, Kiehl CJ (2009) Enzymatic antioxidant responses biostimulants maize and soybean subjected to drought. Sci Agric 66:395–402

    Article  Google Scholar 

  • Vaugham D, Linehan DJ (1976) The growth of wheat plants in humic acid solutions under axenic conditions. Plant Soil 44:445–449

    Article  Google Scholar 

  • Vaughan D, Ord BG (1981) Uptake and incorporation of 14C-labelled soil organic matter by roots of Pisum sativum L. J Exp Bot 32:679–687

    Article  Google Scholar 

  • Vaughan D, Ord BG (1982) An in vitro effect of soil organic matter fractions and synthetic humic acids on the generation of superoxide radicals. Plant Soil 66:113–116

    Article  CAS  Google Scholar 

  • Yang C, Wang M, Lu Y, Chang I, Chou C (2004) Humic substances affect the activity of chlorophyllase. J Chem Ecol 8:1561–1573

    Google Scholar 

  • Zandonadi DB, Santos MP, Dobbss LB, Olivares FL, Canellas LP, Binzel ML, Okorokova-Façanha AL, Façanha AR (2010) Nitric oxide mediates humic acids-induced root development and plasma membrane H+-ATPase activation. Planta 231:1025–1036

    Article  CAS  PubMed  Google Scholar 

  • Zepeda-Jazo I, Velarde-Buendía AM, Enríquez-Figueroa R, Bose J, Shabala S, Muñiz-Murguía J, Pottosin II (2011) Polyamines interact with hydroxyl radicals in activating Ca2+ and K+ transport across the root epidermal plasma membranes. Plant Physiol 157:2167–2180

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

To the TWAS/CNPq for the grant to Andres Calderin Garcia and FAPERJ/Prioridade Rio and CNPq/UNIVERSAL to Ricardo L. Berbara.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo L. L. Berbara .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Berbara, R.L.L., García, A.C. (2014). Humic Substances and Plant Defense Metabolism. In: Ahmad, P., Wani, M. (eds) Physiological Mechanisms and Adaptation Strategies in Plants Under Changing Environment. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8591-9_11

Download citation

Publish with us

Policies and ethics