Skip to main content

Agronomically Relevant Traits Transferred to Major Crop Plants by Alien Introgressions

  • Chapter
  • First Online:
Alien Gene Transfer in Crop Plants, Volume 1

Abstract

Extensive selection for increased crop productivity resulted in increased frequency of extreme traits that eroded diversity for a number of plant attributes making the present day crop genotypes vulnerable to changes in environmental conditions, biotic and abiotic stresses. The early domesticates and wild relatives of crop plants are rich sources of diversity and exhibit better performance under harsh climatic conditions as well as under high pathogen loads. The plant breeders have realized the need of broadening the genetic base of cultivated genotypes and have made genuine efforts to explore alien-diversity to breed genotypes for challenging environmental conditions, improved yield and quality. It is evident from these efforts that incorporation of the alien chromatin into the cultivated background is an important tool to improve plant productivity. In this chapter, we deal with available sources of diversity, methods of alien introgression, available breeding material and its implications in characterization of the alien genes, successful examples of alien-introgression and their contribution to the crop improvement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allard RW (1996) Genetic basis of the evolution of adaptedness in plant. In: Tigerstedt A (ed) Adaptation in plant breeding. Kluwer, The Netherlands, pp 1–6

    Google Scholar 

  • Amante-Bordeos A, Sitch LA, Nelson R, Dalmacio RD, Oliva NP, Aswidinnoor H, Leung H (1992) Transfer of bacterial blight and blast resistance from the tetraploid wild rice Oryza minuta to cultivated rice, Oryza sativa. Theor Appl Genet 84:345–354

    Google Scholar 

  • Ammar K, Mergoum M, Rajoram S (2004) The history and evolution of triticale. In: Megoum M, Gomez-Macpherson H (eds) Triticale improvement and production. Rome, Italy, pp 1–11, FAO Plant Production and Protection Series No. 179

    Google Scholar 

  • Arrigo N, Guadagnuolo R, Lappe S, Pasche S, Parisod C, Felber F (2011) Gene flow between wheat and wild relatives: empirical evidence from Aegilops geniculata Ae. neglecta and Ae. triuncialis. Evol Appl 4:685–695

    Google Scholar 

  • Ashikari M, Matsuoka M (2006) Identification, isolation and pyramiding of quantitative trait loci for rice breeding. Trends Plant Sci 11:344–350

    PubMed  CAS  Google Scholar 

  • Atri C, Kumar B, Kumar H, Kumar S, Sharma S, Banga SS (2012) Development and characterization of Brassica juncea–fruticulosa introgression lines exhibiting resistance to mustard aphid (Lipaphis erysimi Kalt). BMC Genet 13:104

    PubMed  CAS  Google Scholar 

  • Avivi L (1978) High protein content in wild tetraploid Triticum dicoccoides Korn. In: Ramanujam S (ed) Proceedings of the 5th international wheat genetics symposium. Indian Society of Genetics and Plant Breeding, New Delhi, India, pp 372–380

    Google Scholar 

  • Baker M (2012) Gene-editing nucleases. Nat Methods 9:23–26

    PubMed  CAS  Google Scholar 

  • Balyan HS, Gupta PK, Kumar S, Dhariwal R, Jaiswal V, Tyagi S, Agarwal P, Gahlaut V, Kumari S (2013) Genetic improvement of grain protein content and other health-related constituents of wheat grain. Plant Breed. doi:10.1111/pbr.12047

    Google Scholar 

  • Baum M, Grando S, Backes G, Jahoor A, Sabbagh A, Ceccarelli S (2003) QTLs for agronomic traits in the Mediterranean environment identified in recombinant inbred lines of the cross “Arta”×H. spontaneum 41-1. Theor Appl Genet 107:1215–1225

    PubMed  CAS  Google Scholar 

  • Belcher AR, Zwonitzer JC, Santa Cruz J, Krakowsky MD, Chung CL, Nelson R, Arellano C, Balint-Kurti PJ (2012) Analysis of quantitative disease resistance to southern leaf blight and of multiple disease resistance in maize, using near-isogenic lines. Theor Appl Genet 124:433–445

    PubMed  Google Scholar 

  • Bernacchi D, Beck-Bunn T, Emmatty D, Eshed Y, Inai S, Lopez J, Petiard V, Sayama H, Uhlig J, Zamir D, Tanksley S (1998a) Advanced backcross QTL analysis of tomato. II. Evaluation of near-isogenic lines carrying single-donor introgressions for desirable wild QTL-alleles from L. hirsutum and L. pimpinellifolium. Theor Appl Genet 97:170–180

    CAS  Google Scholar 

  • Bernacchi D, Beck-Bunn T, Eshed Y, Lopez J, Petiard V, Uhlig J, Zamir D, Tanksley S (1998b) Advanced backcross QTL analysis in tomato. I. Identification of QTLs for traits of agronomic importance from Lycopersicon hirsutum. Theor Appl Genet 97:381–397

    CAS  Google Scholar 

  • Black R (2006) New crops needed to avoid famines. Environment correspondent, BBC News website, http://news.bbc.co.uk/2/hi/science/nature/6200114.stm.

  • Bommineni VR, Jauhar PP (1997) Wide hybridization and genome relationships in cereals: an assessment of molecular approaches. Maydica 42:81–105

    Google Scholar 

  • Bouis HE (2003) Micronutrient fortification of plants through plant breeding: can it improve nutrition in man at low cost? Proc Nutr Soc 62:403–411

    PubMed  Google Scholar 

  • Branca F, Cartea E (2011) Brassica. In: Kole C (ed) Wild crop relatives: genomic and breeding resources, Vol. Oilseeds. Springer-Heidelberg, Dordrecht, pp 17–36

    Google Scholar 

  • Brar DS, Khush GS (1997) Alien introgression in rice. Plant Mol Biol 35:35–47

    PubMed  CAS  Google Scholar 

  • Brown-Guidera GL, Cox TS, Gill BS, Hatchett JH, Bockus WW, Leath S, Peterson CJ, Thomas JB, Zever P (1996) Evaluation of a collection of wild timopheevi wheat for resistance to disease and anthropod pests. Plant Dis 80:928–933

    Google Scholar 

  • Brubaker CL, Brown AHD (2003) The use of multiple alien chromosome addition aneuploids facilitates genetic linkage mapping of the Gossypium G genome. Genome 46:774–791

    PubMed  CAS  Google Scholar 

  • Cadle MM, Murray TD, Jones SS (1997) Identification of resistance to Pseudocercosporella herpotrichoides in Triticum monococcum. Plant Dis 81:1181–1186

    Google Scholar 

  • Cakmak I, Ozkan H, Braun HJ, Welch RM, Romheld V (2000) Zinc and iron concentrations in seeds of wild, primitive, and modern wheats. Food Nutr Bull 21:401–403

    Google Scholar 

  • Campbell BT, Baenziger PS, Gill KS, Eskridge KM, Budak H, Erayman M, Dweikat I, Yen Y (2003) Identification of QTL and environmental interaction associated with agronomic traits on chromosomes 3A of wheat. Crop Sci 43:1493–1505

    CAS  Google Scholar 

  • Cao A et al (2011) Serine/threonine kinase gene Stpk-V, a key member of powdery mildew resistance gene Pm21, confers powdery mildew resistance in wheat. Proc Natl Acad Sci U S A 108:7727–7732

    PubMed  CAS  Google Scholar 

  • Ceoloni C, Donini P (1993) Combining mutations for the two homoeologous pairing suppressor genes Ph1 and Ph2 in common wheat and in hybrids with alien Triticeae. Genome 36:377–386

    PubMed  CAS  Google Scholar 

  • Ceoloni C, Jauhar PP (2006) Chromosome engineering of the durum wheat genome: Strategies and applications of potential breeding value. In: Singh RJ, Jauhar PP (eds), Genetic Resources, Chromosome Engineering, and Crop Improvement, vol 2: Cereals, CRC Press-Taylor & Francis Group, Boca Raton, pp 27–59

    Google Scholar 

  • Chaïb J, Lecomte L, Buret M, Causse M (2006) Stability over genetic backgrounds, generations and years of quantitative trait locus (QTLs) for organoleptic quality in tomato. Theor Appl Genet 112:934–944

    PubMed  Google Scholar 

  • Chan SWL (2010) Chromosome engineering: power tools for plant genetics. Trends Biotechnol 28:605–610

    PubMed  CAS  Google Scholar 

  • Chang TT (1984) Conservation of rice genetic resources: luxury or necessity? Science 224:251–256

    PubMed  CAS  Google Scholar 

  • Chavez AL, Sanchez T, Jaramillo G, Bedoya JM, Echeverry J, Bolanos EA, Ceballos H, Iglesias CA (2005) Variation of quality traits in cassava roots evaluated in landraces and improved clones. Euphytica 143:125–133

    Google Scholar 

  • Chee P, Draye X, Jiang CX, Decanini L, Delmonte TA, Bredhauer R, Smith CW, Paterson AH (2005a) Molecular dissection of interspecific variation between Gossypium hirsutum and Gossypium barbadense (cotton) by a backcross-self approach: I. Fiber elongation. Theor Appl Genet 111:757–763

    PubMed  CAS  Google Scholar 

  • Chee P, Draye X, Jiang CX, Decanini L, Delmonte TA, Bredhauer R, Smith CW, Paterson AH (2005b) Molecular dissection of phenotypic variation between Gossypium hirsutum and Gossypium barbadense(cotton) by a backcross-self approach: III. Fiber length. Theor Appl Genet 111:772–781

    Google Scholar 

  • Cheema KK, Navtej SB, Mangat GS, Das A, Vikal Y, Brar DS, Khush GS, Singh K (2008) Development of high yielding IR64 × Oryza rufipogon (Griff.) introgression lines and identification of introgressed alien chromosome segments using SSR markers. Euphytica 160:401–409

    CAS  Google Scholar 

  • Chen P, Chunfang Y, Yin H, Shengwei C, Bo Z, Aizhong C, Xiue W (2013) Radiation-induced translocations with reduced Haynaldia villosa chromatin at the Pm21 locus for powdery mildew resistance in wheat. Mol Breed 31:477–484

    CAS  Google Scholar 

  • Chen PD, Tsujimoto H, Gill BS (1994) Transfer of Ph I genes promoting homoeologous pairing from Triticum speltoides to common wheat. Theor Appl Genet 88:97–101

    CAS  Google Scholar 

  • Conway G (1997) The doubly green revolution: food for all in the 21st century. Cornell University Press—Technology & Engineering, USA, p 344

    Google Scholar 

  • Cossani CM, Reynolds MP (2012) Physiological traits for improving heat tolerance in wheat. Plant Physiol 160:1710–1718

    PubMed  CAS  Google Scholar 

  • de Castro AP, Julian O, Diez MJ (2013) Genetic control and mapping of Solanum chilense LA1932, LA1960 and LA1971-derived resistance to tomato yellow leaf curl disease. Euphytica 190:203–214

    Google Scholar 

  • del Pozo A, Castillo D, Inostroza L, Matus I, Méndez AM, Morcuende R (2012) Physiological and yield responses of recombinant chromosome substitution lines of barley to terminal drought in a Mediterranean-type environment. Annl Appl Biol 160:157–167

    Google Scholar 

  • Distelfeld A, Uauy C, Fahima T, Dubcovsky J (2006) Physical map of the wheat high-grain protein content gene Gpc-B1 and development of a high-throughput molecular marker. New Phytol 169:753–763

    PubMed  CAS  Google Scholar 

  • Draye X, Chee P, Jiang CX, Decanini L, Delmonte TA, Bredhauer R, Smith CW, Paterson AH (2005) Molecular dissection of inter specific variation between Gossypium hirsutum and G. barbadense (cotton) by a backcross-self approach: II. Fiber fineness. Theor Appl Genet 111:764–771

    PubMed  CAS  Google Scholar 

  • Du W, Wang J, Lu M, Sun S, Chen X, Zhao J, Yang Q, Jun Wu J (2013) Molecular cytogenetic identification of a wheat–Psathyrostachys huashanica Keng 5Ns disomic addition line with stripe rust resistance. Mol Breed. doi:10.1007/s11032-013-9841-0

    Google Scholar 

  • Dubcovsky J, Dvorak J (2007) Genome plasticity a key factor in the success of polyploid wheat under domestication. Science 316:1862–1865

    PubMed  CAS  Google Scholar 

  • Dvorak J, Deal KR, Luo MC (2006) Genome integrity and transmission discovery and mapping of wheat Ph1 suppressors. Genetics 174:17–27

    PubMed  CAS  Google Scholar 

  • Dvorak J, Edge M, Ross K (1988) On the evolution of the adaptation of Lophopyrum elongatum to growth in saline environments. Proc Natl Acad Sci U S A 85:3805–3809

    PubMed  CAS  Google Scholar 

  • Dvorak J, Knott DR (1974) Disomic and ditelosomic additions of diploid Agropyron elongatum chromosomes to Triticum aestivum. Can J Genet Cytol 16:399–417

    Google Scholar 

  • Ehdaie B, Waines JG (2008) Larger root system increases water—nitrogen uptake and grain yield in bread wheat. In: Appels et al. (eds) 11th international wheat genetics symposium. Sydney University Press, Brisbane, QLD, Australia, pp 659.

    Google Scholar 

  • Ehdaie B, Whitkus RW, Waines JG (2003) Root biomass, water-use efficiency, and performance of wheat-rye translocations of chromosomes 1 and 2 in spring bread wheat “Pavon”. Crop Sci 43:710–717

    Google Scholar 

  • Ellis PR, Kiff NB, Pink DAC, Jukes PL, Lynn J, Tatchell GM (2000) Variation in resistance to the cabbage aphid (Brevicoryne brassicae) between and within wild and cultivated brassica species. Genet Resour Crop Evol 47:395–401

    Google Scholar 

  • Eshghi R, Salayeva S, Ebrahimpour F, Rahimi M, Baraty M, Ojaghi J (2013) Advanced-backcross QTL analysis in hulless barley: I. Detection of exotic alleles for yield and yield components introgressed from Hordeum vulgare ssp. Spontaneum. Intl J Agri Crop Sci 5:95–100

    Google Scholar 

  • Fasahat P, Muhammad K, Abdullah A, Wickneswari R (2012) Identification of introgressed alien chromosome segments associated with grain quality in Oryza rufipogon × MR219 advanced breeding lines using SSR markers. Genet Mol Res 11:3534–3546

    PubMed  CAS  Google Scholar 

  • Fedak G, Armstrong KC, Sinha RC, Gilbert J, Procunier JD, Miller JD, Pandeya R (1997) Wide crosses to improve Fusarium head blight resistance in wheat. Cereal Res Commun 25:651–654

    Google Scholar 

  • Fedak G (1999) Molecular aids for integration of alien chromatin through wide crosses. Genome 42:584–591

    Google Scholar 

  • Fernie AR, Tadmor Y, Zamir D (2006) Natural genetic variation for improving crop quality. Curr Opin Plant Biol 9:196–202

    PubMed  Google Scholar 

  • Feuillet C, Langridge P, Waugh R (2008) Cereal breeding takes a walk on the wild side. Trends Genet 24:24–32

    PubMed  CAS  Google Scholar 

  • Fonceka D, Tossim HA, Rivallan R, Vignes H, Lacut E et al (2012) Construction of chromosome segment substitution lines in peanut (Arachis hypogaea L.) using a wild synthetic and QTL mapping for plant morphology. PLoS One 7:e48642

    PubMed  CAS  Google Scholar 

  • Frary A (2000) fw2.2: a quantitative trait locus key to the evolution of tomato fruit size. Science 289:85–88

    PubMed  CAS  Google Scholar 

  • Friebe B, Jiang J, Raupp WJ, McIntosh RA, Gill BS (1996) Characterization of wheat alien translocations conferring resistance to diseases and pests: current status. Euphytica 91:59–87

    Google Scholar 

  • Fryxell PA (1992) A revised taxonomic interpretation of Gossypium L., (Malvacea). Rheedea 2:108–165

    Google Scholar 

  • Fu Q, Zhang P, Tan L, Zhu Z, Ma D, Fu Y, Zhan X, Cai H, Sun C (2010) Analysis of QTLs for yield-related traits in Yuanjiang common wild rice (Oryza rufipogon Griff.). J Genet Genomics 37:147–157

    PubMed  CAS  Google Scholar 

  • Fulton TM, Beck-Bunn T, Emmatty D, Eshed Y, Lopez J, Petiard V, Uhlig J, Zamir D, Tanksley SD (1997) QTL analysis of an advanced backcross of Lycopersicon peruvianum to the cultivated tomato and comparisons with QTLs found in other wild species. Theor Appl Genet 95:881–894

    CAS  Google Scholar 

  • Fulton TM, Bucheli P, Voirol E, López J, Péetiard V, Tanksley SD (2002) Quantitative trait loci (QTL) affecting sugars, organic acids and other biochemical properties possibly contributing to flavor, identified in four advanced backcross populations of tomato. Euphytica 127:163–177

    CAS  Google Scholar 

  • Fulton TM, Grandillo S, Beck-Bunn T, Fridman E, Frampton A, Lopez J, Petiard V, Uhlig J, Zamir D, Tanksley SD (2000) Advanced backcross QTL analysis of a Lycopersicon esculentum × Lycopersicon parviflorum cross. Theor Appl Genet 100:1025–1042

    CAS  Google Scholar 

  • Galinat WC (1999) Reverse maize breeding for high density populations. Maize Genet Newslet 73:91

    Google Scholar 

  • Ghandilyan A, Vreugdenhil D, Aarts MGM (2006) Progress in the genetic understanding ofplant iron and zinc nutrition. Physiol Plant 126:407–417

    CAS  Google Scholar 

  • Gill BS, Friebe B (2009) Cytogenetic analysis of wheat and rye genomes. In: Feuillet C, Muehlbauer GJ (eds) Genetics and Genomics of the Triticeae vol. 7. Springer, New York, pp 121–135

    Google Scholar 

  • Gill BS, Friebe B, Raupp WJ, Wilson DL, Cox TS, Sears RG, Brown‐Guedira GL, Fritz AK (2006) Wheat genetics resource center: the first 25 years. Adv Agron 89:73–135

    Google Scholar 

  • Gill BS, Friebe BR, White FF (2011) Alien introgressions represent a rich source of genes for crop improvement. Proc Natl Acad Sci U S A 108:7657–7658

    PubMed  CAS  Google Scholar 

  • Gill BS, Friebe B (2002) Cytogenetics, phylogeny and evolution of cultivated wheats. In: Rajaram S, Curtis BC, Gomez Macpherson H (eds) Bread wheat—improvement and production. FAO, Rome, pp 71–88, Plant Production and Protection series No. 30

    Google Scholar 

  • Giovannoni JJ (2006) Breeding new life into plant metabolism. Nat Biotechnol 24:418–419

    PubMed  CAS  Google Scholar 

  • Graham RD, Welch RM, Bouis HE (2001) Addressing micronutrient malnutrition through enhancing the nutritional quality of staple foods: principles, perspectives and knowledge gaps. Advance Agron 70:77–142

    Google Scholar 

  • Grandillo S, Tanksley SD (2005) Advanced backcross QTL analysis: results and perspectives. In: Tuberosa R, Phillips RL, Gale M (eds) Proceedings of the international congress on the wake of the double helix: from the green revolution to the gene revolution, 27–31 May 2003. Bologna, Italy, pp 115–132, ©2005 Avenue media.

    Google Scholar 

  • Grando S, Baum M, Ceccarelli S, Goodchild A, El-Haramein FL, Jahoor A, Backes G (2005) QTL for straw quality characteristics identified in recombinant inbred lines of a Hordeum vulgare×H. spontaneum cross in a Mediterranean environment. Theor Appl Genet 110:688–695

    PubMed  CAS  Google Scholar 

  • Guo SB, Wei Y, Li XQ, Liu KQ, Huang FK, Chen CH, Gao GQ (2013) Development and identification of introgression lines from the cross of Oryza sativa and Oryza minuta. Rice Sci. doi:10.1016/S1672-6308(13)60111-0

    Google Scholar 

  • Gupta PK, Balyan HS, Gahlaut V, Kulwal PL (2012) Phenotyping, genetic dissection, and breeding for drought and heat tolerance in common wheat: status and prospects. Plant Breed Rev 36:85–168

    Google Scholar 

  • Gupta PK, Rustgi S, Mir RR (2013) Array-based high-throughput DNA markers and genotyping platforms for cereal genetics and genomics. In: Gupta PK, Varshney RK (eds) Cereal genomics-II. Springer, New York

    Google Scholar 

  • Gupta PK, Tsuchiya T (1991) Chromosome engineering in plants: genetics, breeding, evolution (developments in plant genetics and breeding). Elsevier Science, USA

    Google Scholar 

  • Gur A, Zamir D (2004) Unused genetic variation can lift yield barriers in plant breeding. PLoS Biol 2: e245

    Google Scholar 

  • Gyenis L, Yun SJ, Smith KP, Steffenson BJ, Bossolini E, Sanguineti MC, Muehlbauer GJ (2007) Genetic architecture of quantitative trait loci associated with morphological and agronomic trait differences in a wild by cultivated barley cross. Genome 50:714–723

    PubMed  CAS  Google Scholar 

  • Happstadius I, Ljungberg A, Kristiansson B, Dixelius C (2003) Identification of Brassica oleracea germplasm with improved resistance to Verticillium wilt. Plant Breed 122:30–34

    Google Scholar 

  • Harlan JR, de Wet JMJ (1971) Towards a rational classification of cultivated plants. Taxon 20:509–517

    Google Scholar 

  • Hawkesford MJ, Zhao FJ (2007) Strategies for increasing the selenium content of wheat. J Cer Sci 46:282–292

    CAS  Google Scholar 

  • Hegde SG, Waines JG (2004) Hybridization and introgression between bread wheat and wild and weedy relatives in North America. Crop Sci 44:1145–1155

    Google Scholar 

  • Ho JC, McCouch SR, Smith ME (2002) Improvement of hybrid yield by advanced backcross QTL analysis in elite maize. Theor Appl Genet 105:440–448

    PubMed  CAS  Google Scholar 

  • Hori K, Sato K, Nankaku N, Takeda K (2005) QTL analysis in recombinant chromosome substitution lines and doubled haploid lines derived from a cross between Hordeum vulgare ssp vulgare and Hordeum vulgare ssp spontaneum. Mol Breed 16:295–311

    CAS  Google Scholar 

  • Huang XQ, Cöster H, Ganal MW, Röder MS (2003) Advanced backcross QTL analysis for the identification of quantitative trait loci alleles from wild relatives of wheat (Triticum aestivum L). Theor Appl Genet 106:1379–1389

    PubMed  CAS  Google Scholar 

  • Huang XQ, Kempf H, Ganal MW, Röder MS (2004) Advanced backcross QTL analysis in progenies derived from a cross between a German elite winter wheat variety and a synthetic wheat (Triticum aestivum L). Theor Appl Genet 109:933–943

    PubMed  CAS  Google Scholar 

  • Inostroza L, del Pozo A, Matus I, Castillo D, Hayes P, Machado S, Corey A (2009) Association mapping of plant height, yield, and yield stability in recombinant chromosome substitution lines (RCSLs) using Hordeum vulgare subsp. spontaneum as a source of donor alleles in a Hordeum vulgare subsp. vulgare background. Mol Breed 23:365–376

    Google Scholar 

  • Jackson MT (1997) Conservation of rice genetic resources: the role of International RiceGenebank at IRRI. Plant Mol Biol 35:61–67

    PubMed  CAS  Google Scholar 

  • Jacques PJ, Jacques JR (2012) Monocropping cultures into ruin: the loss of food varieties and cultural diversity. Sustainability 4:2970–2997

    Google Scholar 

  • Jauhar PP (2006) Cytogenetic architecture of cereal crops and their manupulation to fit human needs: opportunities and challenges. In: Singh RJ, Jauhar PP (eds) Genetic resources, chromosome engineering, and crop improvement: cereals, vol 2. CRC Press, Boca Raton, FL, pp 1–25

    Google Scholar 

  • Jenczewski E, Eber F, Grimaud A, Huet S, Lucas MO, Monod H, Chevre AM (2003) PrBn, a major gene controlling homeologous pairing in oilseed rape (Brassica napus) haploids. Genetics 164:645–653

    PubMed  CAS  Google Scholar 

  • Jiang J, Gill BS (1994) Recent advances in alien gene transfer in wheat. Euphytica 73:199–212

    Google Scholar 

  • Joppa LR, Changheng D, Hart GE, Hareland GA (1997) Mapping gene(s) for grain protein in tetraploid wheat (Triticum turgidium L.) using a population of recombinant inbred chromosome lines. Crop Sci 37:1586–1589

    CAS  Google Scholar 

  • Khush GS (1997) Origin, dispersal, cultivation and variation of rice. Plant Mol Biol 35:25–34

    PubMed  CAS  Google Scholar 

  • Kilian B, Mammen K, Millet E, Sharma R, Graner A, Salamini F, Hammer K, Özkan H (2011) Aegilops. In: Kole C (ed) Wild crop relatives: genomic and breeding resources. Cereals. Springer, New York, pp 1–76

    Google Scholar 

  • King IP, Forster BP, Law CN, Kant KA, Orford SE, Gorham J, Reader S, Miller TE (1997) Introgression of salt tolerance genes from Thinopyrum bessarabicum into wheat. New Phytol 137:75–81

    Google Scholar 

  • Knott DR (1989) The wheat rusts—breeding for resistance. Theoretical and applied genetics monograph no. 12, Springer, Berlin.

    Google Scholar 

  • Kole C (2011a) Wild crop relatives: genomic and breeding resources: legume crops and forages. Springer, New York

    Google Scholar 

  • Kole C (2011b) Wild crop relatives: genomic and breeding resources: oilseeds. Springer, New York

    Google Scholar 

  • Kole C (2011c) Wild crop relatives: genomic and breeding resources: cereals. Springer, New York

    Google Scholar 

  • Kovach MJ, McCouch SR (2008) Leveraging natural diversity: back through the bottleneck. Curr Opin Plant Biol 11:193–200

    PubMed  CAS  Google Scholar 

  • Kumar S, Atri C, Sangha MK, Banga SS (2011) Screening of wild crucifers for resistance to mustard aphid, Lipaphis erysimi (Kaltenbach) and attempt at introgression of resistance gene(s) from Brassica fruticulosa to Brassica juncea. Euphytica 179:461–470

    Google Scholar 

  • Kumar J, Jaiswal V, Kumar A, Kumar N, Mir RR, Kumar S, Dhariwal R, Tyagi S, Khandelwal M, Prabhu KV, Prasad R, Balyan HS, Gupta PK (2011). Introgression of a major gene for high grain protein content in some Indian bread wheat cultivars. Field Crop Research 123:226–233

    Google Scholar 

  • Kunert A, Naz AA, Dedeck O, Pillen K, Léon J (2007) AB-QTL analysis in winter wheat: I. Synthetic hexaploid wheat (T. turgidum ssp. dicoccoides × T. tauschii) as a source of favourable alleles for milling and baking quality traits. Theor Appl Genet 115:683–695

    PubMed  CAS  Google Scholar 

  • Kuraparthy V, Chhuneja P, Dhaliwal HS, Kaur S, Gill BS (2007) Characterization and mapping of cryptic alien introgressions from Aegilops geniculata with new leaf rust and stripe rust resistance genes Lr57 and Yr40 in wheat. Theor Appl Genet 114:1379–1389

    PubMed  CAS  Google Scholar 

  • Kuraparthy V, Sood S, Gill BS (2009) Molecular genetic description of the cryptic wheat–Aegilops geniculata introgression carrying rust resistance genes Lr57 and Yr40 using wheat ESTs and synteny with rice. Genome 52:1025–1036

    PubMed  CAS  Google Scholar 

  • Lammer D, Cai X, Arterburn M, Chatelain J, Murray T, Jones S (2004) A single chromosome addition from Thinopyrum elongatum confers a polycarpic perennial habit to annual wheat. J Exp Bot 55:1715–1720

    PubMed  CAS  Google Scholar 

  • Law CN (1966) The location of genetic factors affecting a quantitative character in wheat. Genetics 53:487–498

    PubMed  CAS  Google Scholar 

  • Lexer C, Buerkle CA, Joseph JA, Heinze B, Fay MF (2007) Admixture in Europe Populus hybrid zones makes feasible the mapping of loci that contribute to reproductive isolation and trait differences. Heredity 98:74–84

    PubMed  CAS  Google Scholar 

  • Li A, Jiang J, Zhang Y, Snowdon RJ, Liang G, Wang Y (2012) Molecular and cytological characterization of introgression lines in yellow seed derived from somatic hybrids between Brassica napus and Sinapis alba. Mol Breed 29:209–219

    CAS  Google Scholar 

  • Li J, Xiao J, Grandillo S, Jiang L, Wan Y, Deng Q, Yuan L, McCouch SR (2004) QTL detection for rice grain quality traits using an Interspecific backcross population derived from cultivated Asian (O. sativa L.) and African (O. glaberrima S.) rice. Genome 47:697–704

    PubMed  CAS  Google Scholar 

  • Li JZ, Huang XQ, Heinrichs F, Ganal MW, Röder MS (2006) Analysis of QTLs for yield components, agronomic traits, and disease resistance in an advanced backcross population of spring barley. Genome 49:454–466

    PubMed  CAS  Google Scholar 

  • Linh HL, Hang NT, Jin FX, Kang KH, Lee YT, Kwon K, Ahn SN (2008) Introgression of a quantitative trait locus for Spikelets per panicle from Oryza minuta to the O. sativa cultivar Hwaseongbyeo. Plant Breed 127:262–267

    Google Scholar 

  • Lippman ZB, Semel Y, Zamir D (2007) An integrated view of quantitative trait variation using tomato interspecific introgression lines. Curr Opin Genet Dev 17:545–552

    PubMed  CAS  Google Scholar 

  • Liu B, Zhang S, Zhu X, Yang Q, Wu S, Mei M, Mauleon R, Leach J, Mew T, Leung H (2004) Candidate defense genes as predictors of quantitative blast resistance in rice. Mol Plant Microbe Interact 17:1146–1152

    PubMed  CAS  Google Scholar 

  • Liu ZH, Wang HY, Wang XE, Zhang GP, Chen PD, Liu DJ (2006) Genotypic and spike positional difference in grain phytase activity, phytate, inorganic phosphorus, iron, and zinc contents in wheat (Triticum aestivum L.). J Cereal Sci 44:212–219

    CAS  Google Scholar 

  • Lobell DB, Burke MB, Tebaldi C, Mastrandrea MD, Falcon WP, Naylor RL (2008) Prioritizing climate change adaptation needs for food security in 2030. Science 319:607–610

    PubMed  CAS  Google Scholar 

  • Lobell DB, Gourdji SM (2012) The influence of climate change on global crop productivity. Plant Physiol 160:1686–1697

    PubMed  CAS  Google Scholar 

  • Lu B-R, Show AA (2005) Gene flow from genetically modified rice and its environmental consequences. BioScience 55:669–678

    Google Scholar 

  • Lukaszewski AJ (2000) Manipulation of the 1RS.1BL translocation in wheat by induced homoeologous recombination. Crop Sci 40:216–225

    CAS  Google Scholar 

  • Lyons G, Ortiz-Monasterio I, Stangoulis J, Graham R (2005) Selenium concentration in wheat grain: is there sufficient genotypic variation to use in breeding? Plant Soil 269:369–380

    CAS  Google Scholar 

  • Mano Y, Omori F, Loaisiga CH, Bird RMK (2009) QTL mapping of above-ground adventitious roots during flooding in maize × teosinte “Zea nicaraguensis” backcross population. Plant Root 3:3–9

    CAS  Google Scholar 

  • Manosalva PM, Davidson RM, Liu B, Zhu X, Hulbert SH, Leung H, Leach JE (2009) A germin-like protein gene family functions as a complex quantitative trait locus conferring broad-spectrum disease resistance in rice. Plant Physiol 149:286–296

    PubMed  CAS  Google Scholar 

  • Manske GGB, Vlek PLG (2002) Root architecture—wheat as a model plant. In: Waisel Y, Eshel A, Kafkafi U (eds) Plant roots: the hidden half. Marcel Dekker Inc, New York, pp 249–259

    Google Scholar 

  • Marcano M, Pugh T, Cros E, Morales S, Portillo Páez EA, Courtois B, Glaszmann JC, Engels JM, Phillips W, Astorga C, Risterucci AM, Fouet O, González V, Rosenberg K, Vallat I, Dagert M, Lanaud C (2007) Adding value to cocoa (Theobroma cacao L.) germplasm information with domestication history and admixture mapping. Theor Appl Genet 114:877–884

    PubMed  Google Scholar 

  • Marri PR, Sarla N, Reddy LV, Siddiq EA (2005) Identification and mapping of yield and yield related QTLs from an Indian accession of Oryza rufipogon. BMC Genet 6:33

    PubMed  Google Scholar 

  • Matsuoka Y (2011) Evolution of polyploid triticum wheats under cultivation: the role of domestication, natural hybridization and allopolyploid speciation in their diversification. Plant Cell Physiol 52:750–764

    PubMed  CAS  Google Scholar 

  • Matus I, Corey A, Filichkin T, Hayes PM, Vales MI, Kling J, Riera-Lizarazu O, Sato K, Powell W, Waugh R (2003) Development and characterization of recombinant chromosome substitution lines (RCSLs) using Hordeum vulgare subsp spontaneum as a source of donor alleles in a Hordeum vulgare subsp vulgare background. Genome 46:1010–1023

    PubMed  CAS  Google Scholar 

  • McCouch S (2004) Diversifying selection in plant breeding. PLoS Biol 2(10):e347, doi:10.1371/journal.pbio.0020347

    Google Scholar 

  • McFadden H, Beasley D, Brubaker CL (2004) Assessment of Gossypium sturtianum and G. australe as potential sources of Fusarium wilt resistance to cotton. Euphytica 138:61–72

    Google Scholar 

  • Méndez AM, Castillo D, del Pozo A, Matus I, Morcuende R (2011) Differences in stem soluble carbohydrate contents among recombinant chromosome substitution lines (RCSLs) of barley under drought in a mediterranean-type environment. Agron Res 9((Special Issue II)):433–438

    Google Scholar 

  • Mujeeb-Kazi A, Rajaram S (2002) Transferring alien genes from related species and genera for wheat improvement. In: Curtis BC, Rajaram S, Gomez Macpherson H (eds.) Bread wheat improvement and production. FAO, Rome, pp 199–215.

    Google Scholar 

  • Murray TD, De La Peña RC, Yildirim A, Jones SS (1994) A new source of resistance to Pseudocercosporella herpotrichoides herpotrichoides cause of eyespot disease of wheat located on chromosome 4V of Dasypyrum villosum. Plant Breed 113:281–286

    Google Scholar 

  • Narasimhamoorthy B, Gill BS, Fritz AK, Nelson JC, Brown-Guedira GL (2006) Advanced backcross QTL analysis of a hard winter wheat × synthetic wheat population. Theor Appl Genet 112:787–796

    PubMed  CAS  Google Scholar 

  • Naz AA, Kunert A, Lind V, Pillen K, Léon J (2008) AB-QTL analysis in winter wheat: II. Genetic analysis of seedling and field resistance against leaf rust in a wheat advanced backcross population. Theor Appl Genet 116:1095–1104

    PubMed  CAS  Google Scholar 

  • Neelam K, Rawat N, Tiwari VK, Malik S, Tripathi SK, Randhawa GS, Dhaliwal HS (2011) Molecular and cytological characterization of high grain iron and zinc wheat Aegilops peregrina derivatives. Mol Breed 28:623–634

    CAS  Google Scholar 

  • Niu Z, Klindworth DL, Friesen TL, Chao S, Jin Y, Cai X, Xu SS (2011) Targeted introgression of a wheat stem rust resistance gene by DNA marker-assisted chromosome engineering. Genetics 187:1011–1021

    PubMed  CAS  Google Scholar 

  • Oka HI (1958) Varietal variation and classification of cultivated rice. Ind J Genet Plant Breed 18:78–79

    Google Scholar 

  • Ortiz R, Braun HJ, Crossa J, Crouch J, Davenport G, Dixon J, Dreisigacker S, Duveiller E, He Z, Huerta J, Joshi AK, Kishii M, Kosina P, Manes Y, Ezzalama M, Morgounov A, Murakami J, Nicol J, Ferrara GO, Ortiz-Monasterio JI, Payne TS, Peña RJ, Reynolds MP, Sayre KD, Sharma RC, Singh RP, Wang J, Warburton M, Wu H, Iwanaga HM (2008) Wheat genetic resources enhancement by the International Maize and Wheat Improvement Center (CIMMYT). Genet Resour Crop Evol 55:1095–1140

    Google Scholar 

  • Peleman JD, van der Voort JR (2003) Breeding by design. Trends Plant Sci 8:330–334

    PubMed  CAS  Google Scholar 

  • Pienaar RV (1990) Wheat and Thinopyrum hybrids. In: Bajaj YPS (ed) Biotechnology in agriculture and forestry, vol 13. Springer, Berlin, pp 167–217

    Google Scholar 

  • Pillen K, Zacharias A, Léon J (2003) Advanced backcross QTL analysis in barley (Hordeum vulgare L.). Theor Appl Genet 107:340–352

    PubMed  CAS  Google Scholar 

  • Pillen K, Zacharias A, Léon J (2004) Comparative AB-QTL analysis in barley using a single exotic donor of Hordeum vulgare ssp. spontaneum. Theor Appl Genet 108:1591–1601

    Google Scholar 

  • Placido DF, Campbell MT, Jin J, Cui X, Kruger GR, Baenziger PS, Walia H (2013) Introgression of novel traits from a wild wheat relative improves drought adaptation in wheat (Triticum aestivum). Plant Physiol. doi:10.1104/pp. 113.214262

    PubMed  Google Scholar 

  • Poland JA, Rife TW (2012) Genotyping-by-sequencing for plant breeding and genetics. Plant Genome 5:92–102

    CAS  Google Scholar 

  • Qi Z, Du P, Qian B, Zhuang L, Chen H, Chen T, Shen J, Guo J, Feng Y, Pei Z (2010) Characterization of a wheat-Thinopyrum bessarabicum (T2JS-2BS.2BL) translocation line. Theor Appl Genet 121:589–597

    PubMed  CAS  Google Scholar 

  • Rajaram S, Mann CE, Ortiz-Ferrara G, Mujeeb-Kazi A (1983) Adaptation, stability and high yield potential of certain 1B/1R CIMMYT wheats. In: Sakamoto S (ed) Proceedings of the 6th international wheat genetic symposium, Kyoto, Japan, pp 613–621.

    Google Scholar 

  • Rajaram S, Villareal RL, Mujeeb-Kazi A (1990) Global impact of 1B/1R spring wheats. In: Agronomy abstracts. ASA, Madison, WI

    Google Scholar 

  • Rawat N, Tiwari VK, Neelam K, Randhawa GS, Friebe B, Gill BS, Dhaliwal HS (2011) Development and molecular characterization of wheat-Aegilops kotschyi addition and substitution lines with high grain protein, iron and zinc. Genome 54:943–953

    PubMed  CAS  Google Scholar 

  • Rawat N, Tiwari VK, Neelam K, Randhawa GS, Singh K, Chhuneja P, Dhaliwal HS (2009a) Development and characterization of wheat-Aegilops kotschyi amphiploids with high grain iron and zinc. Plant Genet Resour 7:271–280

    CAS  Google Scholar 

  • Rawat N, Tiwari VK, Singh N, Randhawa GS, Singh K, Chhuneja P, Dhaliwal HS (2009b) Evaluation and utilization of Aegilops and wild Triticum species for enhancing iron and zinc content in wheat. Genet Resour Crop Evol 56:53–64

    Google Scholar 

  • Rawat N, Neelam K, Tiwari VK, Dhaliwal HS (2013) Biofortification of cereals to overcome hidden hunger. Plant Breed. doi: 10.1111/pbr.12040

  • Rahman ML, Jiang W, Chu SH, Qiao Y, Ham TH, Woo MO, Lee J, Khanam MS, Chin JH, Jeung JU, Brar DS, Jena KK, Koh HJ (2009) High-resolution mapping of two rice brown planthopper resistance genes, Bph20(t) and Bph21(t), originating from Oryza minuta. Theor Appl Genet 119:1237–1246

    PubMed  Google Scholar 

  • Reich D, Patterson N (2005) Will admixture mapping work to find disease genes? Phil Trans R Soc B 360:1605–1607

    PubMed  CAS  Google Scholar 

  • Reynolds MP, Calderini DF, Condon AG, Rajaram S (2001) Physiological basis of yield gains in wheat associated with the Lr19 translocation from Agropyron elongatum. Euphytica 119:137–141

    CAS  Google Scholar 

  • Ribeiro-Carvalho C, Guedes-Pinto H, Harrison G, Heslop-Harrison JS (1997) Wheat-rye chromosome translocations involving small terminal and intercalary rye chromosome segments in the Portuguese wheat landrace Barbela. Heredity 78:539–546

    Google Scholar 

  • Rieseberg LH, Buerkle C (2002) Genetic mapping in hybrid zone. Am Nat 159:S37–S49

    Google Scholar 

  • Rieseberg LH, Whitton J, Gardner K (1999) Hybrid zone and the genetic architecture of a barrier to gene flow between two sunflower specie. Genetics 152:713–727

    PubMed  CAS  Google Scholar 

  • Rustgi S, Shafqat MN, Kumar N, Baenziger PS, Ali ML et al (2013) Genetic dissection of yield and its component traits using high-density composite map of wheat chromosome 3A: Bridging gaps between QTLs and underlying genes. PLoS ONE 8(7): e70526

    Google Scholar 

  • Saal B, Korff M, Léon J, Pillen K (2011) Advanced-backcross QTL analysis in spring barley: IV. Localization of QTL × nitrogen interaction effects for yield-related traits. Euphytica 177:223–239

    Google Scholar 

  • Sacco A, Matteo AD, Lombardi N, Trotta N, Punzo B, Mari A, Barone A (2013) Quantitative trait loci pyramiding for fruit quality traits in tomato. Mol Breed 31:217–222

    PubMed  CAS  Google Scholar 

  • Salamini F, Özkan H, Brandolini A, Schäfer-Pregl R, Martin W (2002) Genetics and geography of wild cereal domestication in the near east. Nat Rev Genet 3:429–441

    PubMed  CAS  Google Scholar 

  • Sarikamis G, Marquez J, MacCormack R, Bennett RN, Roberts J, Mithen R (2006) High glucosinolate broccoli: a delivery system for sulforaphane. Mol Breed 18:219–228

    CAS  Google Scholar 

  • Schauer N, Semel Y, Roessner U, Gur A, Balbo I, Carrari F, Pleban T, Perez-Melis A, Bruedigam C, Kopka J, Willmitzer L, Zamir D, Fernie AR (2006) Comprehensive metabolic profiling and phenotyping of interspecific introgression lines for tomato improvement. Nat Biotechnol 24:447–454

    PubMed  CAS  Google Scholar 

  • Schlegel R, Cakmak I, Torun B, Eker S, Tolay I, Ekiz H, Kalayci M, Braun HJ (1997) Screening for zinc efficiency among wheat relatives and their utilisation for alien gene transfer. In: Braun et al. HJ (eds) Wheat: prospects for global improvement. Proceedings of the 5th international wheat conference, 10–14 June 1996, Ankara, Turkey, pp 347–352

    Google Scholar 

  • Schmalenbach I, Körber N, Pillen K (2008) Selecting a set of wild barley introgression lines and verification of QTL effects for resistance to powdery mildew and leaf rust. Theor Appl Genet 117:1093–1106

    PubMed  Google Scholar 

  • Schmalenbach I, Léon J, Pillen K (2009) Identification and verification of QTLs for agronomic traits using wild barley introgression lines. Theor Appl Genet 118:483–497

    PubMed  CAS  Google Scholar 

  • Sears ER (1953) Nullisomic analysis in common wheat. Am Nat 87:245–252

    Google Scholar 

  • Sears ER (1956) The transfer of leaf rust resistance from Aegilops umbellulata to wheat. Brookhaven Symposium Biol 9:1–22

    Google Scholar 

  • Sears ER (1972) Chromosome engineering in wheat. Stadler Symposium 4:23–38

    Google Scholar 

  • Seifollah K, Alina A, Eduard A (2013) Application of next-generation sequencing technologies for genetic diversity analysis in cereals. In: Gupta PK, Varshney RK (eds) Cereal genomics-II. Springer, New York, pp 77–99

    Google Scholar 

  • Septiningsih EM, Prasetiyono J, Lubis E, Tai TH, Tjubaryat T, Moeljopawiro S, McCouch SR (2003a) Identification of quantitative trait loci for yield and yield components in an advanced backcross population derived from the Oryza sativa variety IR64 and the wild relative O. rufipogon. Theor Appl Genet 107:1419–1432

    PubMed  CAS  Google Scholar 

  • Septiningsih EM, Trijatmiko KR, Moeljopawiro S, McCouch SR (2003b) Identification of quantitative trait loci for grain quality in an advanced backcross population derived from the Oryza sativa variety IR64 and the wild relative O. rufipogon. Theor Appl Genet 107:1433–1441

    PubMed  CAS  Google Scholar 

  • Sharma S, Bhat PR, Ehdaie B, Close TJ, Lukaszewski AJ, Waines JG (2009) Integrated genetic map and genetic analysis of a region associated with root traits on the short arm of rye chromosome 1 in bread wheat. Theor Appl Genet 119:783–793

    PubMed  CAS  Google Scholar 

  • Sharma S, Xu S, Ehdaie B, Hoops A, Close TJ, Lukaszewski AJ, Waines JG (2011) Dissection of QTL effects for root traits using a chromosome arm-specific mapping population in bread wheat. Theor Appl Genet 122:759–769

    PubMed  Google Scholar 

  • Shen Y, Shen J, Dawadondup Zhuang L, Wang Y, Pu J, Feng Y, Chu C, Wang X, Qi Z (2013) Physical localization of a novel blue-grained gene derived from Thinopyrum bessarabicum. Mol Breed 31:195–204

    CAS  Google Scholar 

  • Sheng H, See DR, Murray TD (2012) Mapping QTL for resistance to eyespot of wheat in Aegilops longissima. Theor Appl Genet 125:355–366

    PubMed  Google Scholar 

  • Shewry PR, Halford NG (2002) Cereal seed storage proteins: structures, properties and role in grain utilization. J Exp Bot 53:947–958

    PubMed  CAS  Google Scholar 

  • Simmonds J, Fish L, Leverington-Waite M, Wang Y, Howell P, Snape JW (2008) Mapping of a gene (Vir) for a non-glaucous, viridescent phenotype in bread wheat derived from Triticum dicoccoides, and its association with yield variation. Euphytica 159:333–341

    CAS  Google Scholar 

  • Singh RJ (2007) Landmark research in oilseed crops. In: Singh RJ (ed) Genetic resources, chromosome engineering, and crop improvement: oilseed crops. CRC Press, Boca Raton, FL, pp 1–12

    Google Scholar 

  • Singh RJ, Hymowitz T (1999) Soybean genetic resources and crop improvement. Genome 42:605–616

    CAS  Google Scholar 

  • Singh RP, Hodson DP, Huerta-Espino J, Jin Y, Njau P, Wanyera R, Herrera-Foessel SA, Ward RW (2008) Will stem rust destroy the world’s wheat crop? Adv Agron 98:271–309

    CAS  Google Scholar 

  • Snape JW, Foulkes MJ, Simmonds J, Leverington M, Fish LJ, Wang Y, Ciavarrella M (2007) Dissecting gene × environmental effects on wheat yields via QTL and physiological analysis. Euphytica 154:401–408

    Google Scholar 

  • Song WY, Wang GL, Chen LL, Kim HS, Pi LY, Holsten T, Gardner J, Wang B, Zhai WX, Zhu LH, Fauquet C, Ronald P (1995) A receptor kinaselike protein encoded by the rice disease resistance gene, Xa21. Science 270:1804–1806

    PubMed  CAS  Google Scholar 

  • Stevens R, Buret M, Duffé P, Garchery C, Baldet P, Rothan C, Causse M (2007) Candidate genes and quantitative trait loci affecting fruit ascorbic acid content in three tomato populations. Plant Physiol 143:1943–1953

    PubMed  CAS  Google Scholar 

  • Stewart J McD (1995) Potential for crop improvement with exotic germplasm and genetic engineering. In: Git C, Forrester NW (eds) Challenging the future, proceeding of world cotton research conference. CSIRO, Melbourne, pp 313–327.

    Google Scholar 

  • Stokstad K (2007) Deadly wheat fungus threatens world’s breadbaskets. Science 315:1786–1787

    PubMed  CAS  Google Scholar 

  • Suslow TV, Thomas BR, Bradford KJ (2002) Biotechnology provides new tools for plant breeding. Agr Biotechnol Calif Ser Publ 8043:1–19

    Google Scholar 

  • Swaminathan MS (2009) Gene banks for a warming planet. Science 325:517

    PubMed  CAS  Google Scholar 

  • Swaminathan MS (2010) Achieving food security in times of crisis. New Biotechnol 27:453–460

    CAS  Google Scholar 

  • Tanksley SD, Grandillo S, Fulton TM, Zamir D, Eshed Y, Petiard V, Lopez J, Beck-Bunn T (1996) Advanced backcross QTL analysis in a cross between an elite processing line of tomato and its wild relative L. pimpinellifolium. Theor Appl Genet 92:213–224

    PubMed  CAS  Google Scholar 

  • Tanksley SD, Nelson JC (1996) Advanced backcross QTL analysis: a method for the simultaneous discovery and transfer of valuable QTLs from unadapted germplasm into elite breeding lines. Theor Appl Genet 92:191–203

    PubMed  CAS  Google Scholar 

  • Thomson MJ, Tai TH, McClung AM, Lai XH, Hinga EM, Lobos KB, Xu Y, Martinez CP, McCouch SR (2003) Mapping quantitative trait loci for yield, yield components and morphological traits in an advanced backcross population between Oryza rupogon and the Oryza sativa cultivar Jefferson. Theor Appl Genet 107:479–493

    PubMed  CAS  Google Scholar 

  • Tian F, Li DJ, Fu Q, Zhu ZF, Fu YC, Wang XK, Sun CQ (2006) Construction of introgression lines carrying wild rice (Oryza rufipogon Griff.) segments in cultivated rice (O. sativa L.) background associated with yield-related traits. Theor Appl Genet 112:570–580

    PubMed  CAS  Google Scholar 

  • Timonova EM, Leonova IN, Roeder MS, Salina EA (2013) Marker-assisted development and characterization of a set of Triticum aestivum lines carrying different introgressions from the T. timopheevii genome. Mol Breed 31:123–136

    Google Scholar 

  • Tiwari VK, Rawat N, Neelam K, Kumar S, Randhawa GS, Dhaliwal HS (2010) Substitution of 2S and 7U chromosomes of Aegilops kotschyi in wheat enhances grain iron and zinc concentration. Theor Appl Genet 121:259–269

    PubMed  CAS  Google Scholar 

  • Tonguc M, Griffiths PD (2004) Transfer of powdery mildew resistance from Brassica carinata to Brassica oleracea through embryo rescue. Plant Breed 123:587–589

    Google Scholar 

  • Trethowan RM, Mujeeb-Kazi A (2008) Novel germplasm resources for improving environmental stress tolerance of hexaploid wheat. Crop Sci 48:1255–1265

    Google Scholar 

  • Uauy C, Distelfeld A, Fahima T, Blechl A, Dubcovsky J (2006) A NAC gene regulating senescence improves grain protein, zinc, and iron content in wheat. Science 314:1298–1301

    PubMed  CAS  Google Scholar 

  • Veasey EA, Karasawa PP, Santos MS, Rosa E, Mamani E, Oliveira CX (2004) Variation in the loss of seed dormancy during after-ripening of wild and cultivated rice species. Ann Bot 94:875–882

    PubMed  CAS  Google Scholar 

  • Villareal RL, Del-Toro E, Mujeeb-Kazi A, Rajaram S (1995) The 1BL/1RS chromosome translocation effect on yield characteristic in a Triticum aestivum L. cross. Plant Breed 14:497–500

    Google Scholar 

  • von Bothmer R, Jacobsen N, Baden C, Jargensen RB, Linde-Laursen I (1995) An ecogeographical study of the genus Hordeum. 2nd Edn., International Plant Genetic Resources, Rome

    Google Scholar 

  • von Korff M, Wang H, Léon J, Pillen K (2004) Development of candidate introgression lines using an exotic barley accession (Hordeum vulgare ssp. spontaneum) as donor. Theor Appl Genet 109:1736–1745

    Google Scholar 

  • von Korff M, Wang H, Léon J, Pillen K (2005) AB-QTL analysis in spring barley. I. Detection of resistance genes against powdery mildew, leaf rust and scald introgressed from wild barley. Theor Appl Genet 111:583–590

    Google Scholar 

  • von Korff M, Wang H, Léon J, Pillen K (2006) AB-QTL analysis in spring barley: II. Detection of favourable exotic alleles for agronomic traits introgressed from wild barley (H. vulgare ssp. spontaneum). Theor Appl Genet 112:1221–1231

    Google Scholar 

  • von Korff M, Wang H, Léon J, Pillen K (2008) AB-QTL analysis in spring barley: III. Identification of exotic alleles for the improvement of malting quality in spring barley (H. vulgare ssp. spontaneum). Mol Breed 21:81–93

    Google Scholar 

  • Vreugdenhil D, Aarts MGM, Koorneef M (2005) Exploring natural genetic variation to improve plant nutrient content. In: Broadley MR, White PJ (eds) Plant nutritional genomics. Blackwell, Oxford, UK, pp 201–219

    Google Scholar 

  • Wang B, Yichun N, Zhongxu L, Xianlong Z, Junjie L, Jing B (2012) Molecular diversity, genomic constitution, and QTL mapping of fiber quality by mapped SSRs in introgression lines derived from Gossypium hirsutum × G. darwinii Watt. Theor Appl Genet 125:1263–1274

    PubMed  Google Scholar 

  • Wang B, Chee PW (2010) Application of advanced backcross quantitative trait locus (QTL) analysis in crop improvement. J Plant Breed Crop Sci 2:221–232

    CAS  Google Scholar 

  • Wang L, Xu C, Qu M, Zhang J (2008a) Kernel amino acid composition and protein content of introgression lines from Zea mays ssp. mexicana into cultivated maize. J Cereal Sci 48:387–393

    CAS  Google Scholar 

  • Wang L, Yang A, He C, Qu M, Zhang J (2008b) Creation of new maize germplasm using alien introgression from Zea mays ssp. mexicana. Euphytica 164:789–801

    Google Scholar 

  • Wang RRC, Larson SR, Horton WH, Chatterton NJ (2003) Registration of W4909 and W4910 bread wheat germplasm lines with high salinity tolerance. Crop Sci 43:746

    Google Scholar 

  • Wang S, Yin L, Tanaka H, Tanaka K, Tsujimoto H (2011) Wheat-Aegilops chromosome addition lines showing high iron and zinc contents in grains. Breed Sci 61:189–195

    CAS  Google Scholar 

  • Welch RM, Graham RD (2002) Breeding crops for enhanced micronutrient content. Plant Soil 245:205–214

    CAS  Google Scholar 

  • Welch RM, Graham RD (2004) Breeding for micronutrients in staple food crops from a human nutrition perspective. J Exp Bot 55:353–364

    PubMed  CAS  Google Scholar 

  • Wendel JF, Cronn RC (2003) Polyploidy and the evolutionary history of cotton. Adv Agron 78:139–186

    Google Scholar 

  • White PJ, Broadley MR (2009) Biofortification of crops with seven mineral elements often lacking in human diets—iron, zinc, copper, calcium, magnesium, selenium and iodine. New Phytol 182:49–84

    PubMed  CAS  Google Scholar 

  • Wu J, Yang X, Wang H, Li H, Li L, Li X, Liu W (2006) The introgression of chromosome 6P specifying for increased numbers of florets and kernels from Agropyron cristatum into wheat. Theor Appl Genet 114:13–20

    PubMed  CAS  Google Scholar 

  • Wu JL, Sinha PK, Variar M, Zheng KL, Leach JE, Courtois B, Leung H (2004) Association between molecular markers and blast resistance in an advanced backcross population of rice. Theor Appl Genet 108:1024–1032

    PubMed  CAS  Google Scholar 

  • Xiao J, Li J, Grandillo S, Ahn SN, Yuan L, Tanksley SD, McCouch SR (1998) Identification of trait-improving quantitative trait loci alleles from a wild rice relative, Oryza rufipogon. Genetics 150:899–909

    PubMed  CAS  Google Scholar 

  • Xiao J, Li J, Yuan L, McChouch SR, Tanksley SD (1996) Genetic diversity and its relationship to hybrid performance and heterosis in rice as revealed by PCR-based markers. Theor Appl Genet 92:637–643

    PubMed  CAS  Google Scholar 

  • Xie X, Jin F, Song MH, Suh JP, Hwang HG, Kim YG, McCouch SR, Ahn SN (2008) Fine mapping of a yield-enhancing QTL cluster associated with transgressive variation in an Oryza sativa × O. rufipogon cross. Theor Appl Genet 116:613–622

    PubMed  Google Scholar 

  • Yamamoto T, Lin H, Sasaki T, Yano M (2000) Identification of heading date quantitative trait locus Hd6 and characterization of its epistatic interactions with Hd2 in rice using advanced backcross progeny. Genetics 154:885–891

    PubMed  CAS  Google Scholar 

  • Yano M (2001) Genetic and molecular dissection of naturally occurring variation. Curr Opin Plant Biol 4:130–135

    PubMed  CAS  Google Scholar 

  • Yoon DB, Kang KH, Kim HJ, Ju HG, Kwon SJ, Suh JP, Jeong OY, Ahn SN (2006) Mapping quantitative trait loci for yield components and morphological traits in an advanced backcross population between Oryza grandiglumis and the O. sativa japonica cultivar Hwaseongbyeo. Theor Appl Genet 112:1052–1062

    PubMed  CAS  Google Scholar 

  • Yoshimura A, Nagayama H, Sobrizal, Kurakazu T, Sanchez PL, Doi K, Yamagata Y, Yasui H (2010) Introgression lines of rice (Oryza sativa L.) carrying a donor genome from the wild species, O. glumaepatula Steud. and O. meridionalis Ng. Breed Sci 60:597–603

    Google Scholar 

  • Yu F, Lydiate DJ, Gugel RK, Sharpe AG, Rimmer SR (2012) Introgression of Brassica rapa subsp. sylvestris blackleg resistance into B. napus. Mol Breed 30:1495–1506

    CAS  Google Scholar 

  • Yu J, Holland JB, McMullen MD, Buckler ES (2008) Power analysis of an integrated mapping strategy: nested association mapping. Genetics 138:539–551

    Google Scholar 

  • Yun SJ, Gyenis L, Bossolini E, Hayes PM, Matus I, Smith KP, Steffenson BJ, Tuberosa R, Muehlbauer GJ (2006) Validation of quantitative trait loci for multiple disease resistance in barley using advanced backcross lines developed with a wild barley. Crop Sci 46:1179–1186

    Google Scholar 

  • Zaharieva M, Gaulin E, Havaux M, Acevedo E, Monneveux P (2001) Drought and heat responses in the wild wheat relative Aegilops geniculata Roth: potential interest for wheat improvement. Crop Sci 41:1321–1329

    Google Scholar 

  • Zamir D (2001) Improving plant breeding with exotic genetic libraries. Nat Rev Genet 2:983–989

    PubMed  CAS  Google Scholar 

  • Zan-Min H (2003) Salt tolerance transferred from wild Triticeae species into wheat. Inform Syst Biotechnol. Feb 2003 (http://www.isb.vt.edu; verified 24 Apr 2008).

  • Zeven AC (1980) Polyploidy and domestication: the origin and survival of polyploids in cytotype mixtures. In: Lewis WH (ed) Polyploidy: basic life sciences, vol 13. Springer, FL, USA, pp 385–407

    Google Scholar 

  • Zhang R, Wang X, Chen P (2012) Molecular and cytogenetic characterization of a small alien-segment translocation line carrying the softness genes of Haynaldia villosa. Genome 55:639–646

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Life Sciences Discovery Fund (LSDF) Grant 3143956, and Washington Grain Commission (WGC) Grants to NK (3019-3450-3019-5449 and 3019-7452) and SR (13C-3019-3590). The authors would also like to thank Mrs. Richa Gemini for assisting with the references.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sachin Rustgi Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kumar, N., Rustgi, S. (2014). Agronomically Relevant Traits Transferred to Major Crop Plants by Alien Introgressions. In: Pratap, A., Kumar, J. (eds) Alien Gene Transfer in Crop Plants, Volume 1. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8585-8_9

Download citation

Publish with us

Policies and ethics