Skip to main content

The Method of Lyapunov Functions: RNNs

  • Chapter
  • First Online:
Neural Networks with Discontinuous/Impact Activations

Part of the book series: Nonlinear Systems and Complexity ((NSCH,volume 9))

  • 1351 Accesses

Abstract

In this chapter, we apply the method of Lyapunov functions for differential equations with piecewise constant argument of generalized type to a model of RNNs. The model involves alternating argument. Sufficient conditions are obtained for global exponential stability of the equilibrium point. Examples with numerical simulations are presented to illustrate the results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Akhmet MU (2006) On the integral manifolds of the differential equations with piecewise constant argument of generalized type. In: Agarval RP, Perera K (eds) Proceedings of the conference on differential and difference equations at the florida institute of technology, Melbourne, Florida, 1–5 August 2005. Hindawi Publishing Corporation, Nasr City, pp 11–20

    Google Scholar 

  2. Akhmet MU (2007) On the reduction principle for differential equations with piecewise constant argument of generalized type. J Math Anal Appl 336:646–663

    Article  MathSciNet  MATH  Google Scholar 

  3. Akhmet MU (2008) Almost periodic solutions of differential equations with piecewise constant argument of generalized type. Nonlin Anal Hybrid Syst 2:456–467

    Article  MathSciNet  MATH  Google Scholar 

  4. Akhmet MU (2008) Stability of differential equations with piecewise constant arguments of generalized type. Nonlinear Anal 68:794–803

    Article  MathSciNet  MATH  Google Scholar 

  5. Akhmet MU (2009) Dynamical synthesis of quasi-minimal sets. Int J Bifurcat Chaos 19(7):1–5

    MathSciNet  Google Scholar 

  6. Akhmet MU, Aruğaslan D (2009) Lyapunov-Razumikhin method for differential equations with piecewise constant argument. Discrete Contin Dyn Syst 25(2):457–466

    Article  MathSciNet  MATH  Google Scholar 

  7. Akhmet MU, Büyükadalı C (2010) Differential equations with state-dependent piecewise constant argument. Nonlin Anal 72:4200–4210

    Article  MATH  Google Scholar 

  8. Akhmet MU, Yılmaz E (2010) Impulsive Hopfield-type neural network system with piecewise constant argument. Nonlin Anal Real World Appl 11:2584–2593

    Article  MATH  Google Scholar 

  9. Akhmet MU, Aruğaslan D, Yılmaz E (2010) Stability in cellular neural networks with a piecewise constant argument. J Comput Appl Math 233:2365–2373

    Article  MathSciNet  MATH  Google Scholar 

  10. Akhmet MU, Aruğaslan D, Yılmaz E (2011) Method of Lyapunov functions for differential equations with piecewise constant delay. J Comput Appl Math 235:4554–4560

    Article  MathSciNet  MATH  Google Scholar 

  11. Arik S (2002) An analysis of global asymptotic stability of delayed cellular neural networks. IEEE Trans Neural Network 13:1239–1242

    Article  Google Scholar 

  12. Belair J, Campbell SA, Driessche PVD (1996) Frustration, stability, and delay-induced oscillations in a neural network model. SIAM J Appl Math 56:245–255

    Article  MathSciNet  MATH  Google Scholar 

  13. Buck J, Buck E (1968) Mechanism of rhythmic synchronous flashing of fireflies: fireflies of Southeast Asia may use anticipatory time-measuring in synchronizing their flashing. Science 159:1319–1327

    Article  Google Scholar 

  14. Cao J (1999) On stability of delayed cellular neural networks. Phys Lett A 261:303–308

    Article  MathSciNet  MATH  Google Scholar 

  15. Cao J (2001) Global stability conditions for delayed CNNs. IEEE Trans Circuits Syst I 48:1330–1333

    Article  MATH  Google Scholar 

  16. Chen TP (2001) Global exponential stability of delayed Hopfield neural networks. Neural Networks 14: 977–980

    Article  Google Scholar 

  17. Chen TP, Amari S (2001) Exponential convergence of delayed dynamical systems. Neural Computation 13(3):621–636

    Article  MATH  Google Scholar 

  18. Chua LO (1998) CNN: A paradigm for complexity. World Scientific, Singapore

    MATH  Google Scholar 

  19. Chua LO, Roska T (1990) Cellular neural networks with nonlinear and delay-type template elements. Proceeding 1990 IEEE Int. Workshop on cellular neural networks and their applications, pp 12–25

    Google Scholar 

  20. Chua LO, Roska T (1992) Cellular neural networks with nonlinear and delay type template elements and non-uniform grids. Int J Circuit Theory Appl 20:449–451

    Article  Google Scholar 

  21. Chua LO, Yang L (1988) Cellular neural networks: Applications. IEEE Trans Circuit Syst 35: 1273–1290

    Article  MathSciNet  Google Scholar 

  22. Civalleri PP, Gilli M, Pandolfi L (1993) On stability of cellular neural networks with delay. IEEE Trans Circuits Syst I 40:157–164

    Article  MathSciNet  MATH  Google Scholar 

  23. Cooke KL, Wiener J (1984) Retarded differential equations with piecewise constant delays. J Math Anal Appl 99:265–297

    Article  MathSciNet  MATH  Google Scholar 

  24. Driessche PVD, Zou X (1998) Global attractivity in delayed Hopfield neural network models. SIAM J Appl Math 58(6):1878–1890

    Article  MathSciNet  MATH  Google Scholar 

  25. Driver RD (1979) Can the future influence the present? Phys Rev D 19:1098–1107

    Article  MathSciNet  Google Scholar 

  26. Hale JK (1997) Theory of functional differential equations. Springer, New York

    Google Scholar 

  27. Hoppensteadt FC, Peskin CS (1992) Mathematics in medicine and the life sciences. Springer, New York

    Book  MATH  Google Scholar 

  28. Hsu CH, Lin SS, Shen WX (1999) Traveling waves in cellular neural networks. Int J Bifurcat Chaos 9:1307–1319

    Article  MathSciNet  MATH  Google Scholar 

  29. Huang H, Cao J, Wang J (2002) Global exponential stability and periodic solutions of recurrent neural networks with delays. Phys Lett A 298:393–404

    Article  MathSciNet  MATH  Google Scholar 

  30. Krasovskii NN (1963) Stability of motion, applications of Lyapunov’s second method to differential systems and equations with delay. Stanford University Press, Stanford, California

    MATH  Google Scholar 

  31. Liao X, Wu Z, Yu J (2002) Stability analyses of cellular neural networks with continuous time delay. J Comput Appl Math 143:29–47

    Article  MathSciNet  MATH  Google Scholar 

  32. Mohamad S, Gopalsamy K (2003) Exponential stability of continuous-time and discrete-time cellular neural networks with delays. Appl Math Comput 135:17–38

    Article  MathSciNet  MATH  Google Scholar 

  33. Murray JD (2002) Mathematical biology: I. An introduction, 3rd edn. Interdisciplinary applied mathematics. Springer, New York

    Google Scholar 

  34. Park JH (2006) Global exponential stability of cellular neural networks with variable delays. Appl Math Comput 183:1214–1219

    Article  MathSciNet  MATH  Google Scholar 

  35. Weng P, Wu J (2003) Deformation of traveling waves in delayed cellular neural networks. Int J Bifurct Chaos 13(4):797–813

    Article  MathSciNet  MATH  Google Scholar 

  36. Wiener J (1993) Generalized solutions of functional differential equations. World Scientific, Singapore

    MATH  Google Scholar 

  37. Xu S, Lamb J, Ho DWC, Zoua Y (2005) Delay-dependent exponential stability for a class of neural networks with time delays. J Comput Appl Math 183:16–28

    Article  MathSciNet  MATH  Google Scholar 

  38. Xu S, Chu Y, Lu J (2006) New results on global exponential stability of recurrent neural networks with time-varying delays. Phys Lett A 352:371–379

    Article  MATH  Google Scholar 

  39. Yang X, Liao X, Li C, Evans DJ (2006) New estimate on the domains of attraction of equilibrium points in continuous Hopfield neural networks. Phys Lett A 351:161–166

    Article  MATH  Google Scholar 

  40. Zeng Z, Wang J (2006) Global exponential stability of recurrent neural networks with time-varying delays in the presence of strong external stimuli. Neural Netw 19:1528–1537

    Article  MATH  Google Scholar 

  41. Zeng Z, Wang J (2006) Improved conditions for global exponential stability of recurrent neural networks with time-varying delays. IEEE Transact On Neural Netw 17(3):623–635

    Article  MathSciNet  Google Scholar 

  42. Zhang JY (2003) Globally exponential stability of neural networks with variable delays. IEEE Transact Circuits Syst Part I 50(2):288–291

    Article  Google Scholar 

  43. Zhang Q (2005) Delay-dependent exponential stability of cellular neural networks with time-varying delays. Chaos Solitons Fractals 23:1361–1369

    Google Scholar 

  44. Zhang Q, Wei X, Xu J (2004) An analysis on the global asymptotic stability for neural networks with variable delays. Phys Lett A 328:163–169

    Article  MathSciNet  MATH  Google Scholar 

  45. Zhang Q, Wei X, Xu J, (2007) Stability of delayed cellular neural networks. Chaos Solitons Fractals 31:514–520

    Article  MathSciNet  MATH  Google Scholar 

  46. Zhou DM, Cao JD (2002) Globally exponential stability conditions for cellular neural networks with time-varying delays. Appl Math Comput 131(2-3):487–496

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Akhmet, M., Yılmaz, E. (2014). The Method of Lyapunov Functions: RNNs. In: Neural Networks with Discontinuous/Impact Activations. Nonlinear Systems and Complexity, vol 9. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8566-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-8566-7_7

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-8565-0

  • Online ISBN: 978-1-4614-8566-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics