Skip to main content

Using Animal Models of Celiac Disease to Understand the Role of MHC II

  • Chapter
  • First Online:
Celiac Disease

Abstract

There are now numerous animal models for components of celiac disease (CD), some of which are spontaneous and some of which are induced. There are also transgenic animal models that allow for the analysis of specific genes in the pathogenesis of celiac disease. As genome-wide association studies (GWAS) have demonstrated, the Major Histocompatibility Complex Class II (MHC II) molecules DQ2 and DQ8 are associated with the greatest risk, and mouse models in which these genes are expressed have revealed a great deal in their role toward the development of CD. Spontaneous animal models of CD have also provided a wealth of information on how the innate immune response to gluten can contribute to the T-cell response, eventually resulting in a gluten-dependent enteropathy. Although currently there are no published animal models in which a gluten-dependent enteropathy characterized by villous atrophy in the setting of specific MHC II alleles develops, great progress has been made in understanding that a strong CD4+ T-cell response to gluten and the development of enteropathy are uniquely intertwined in the human situation that we know as CD. Many more publications are expected to come out in the future that help us to better understand this unique phenomenon of CD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jabri B, Sollid LM. Mechanisms of disease: immunopathogenesis of celiac disease. Nat Clin Pract Gastroenterol Hepatol. 2006;3(9):516–25 [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t Review].

    Article  CAS  PubMed  Google Scholar 

  2. Green PH, Jabri B. Celiac disease. Annu Rev Med. 2006;57:207–21.

    Article  CAS  PubMed  Google Scholar 

  3. Dissanayake AS, Jerrome DW, Offord RE, Truelove SC, Whitehead R. Identifying toxic fractions of wheat gluten and their effect on the jejunal mucosa in coeliac disease. Gut. 1974;15(12):931–46.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Hovhannisyan Z, Weiss A, Martin A, Wiesner M, Tollefsen S, Yoshida K, et al. The role of HLA-DQ8 beta57 polymorphism in the anti-gluten T-cell response in coeliac disease. Nature. 2008;456(7221):534–8 [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t].

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Sollid LM, Jabri B. Celiac disease and transglutaminase 2: a model for posttranslational modification of antigens and HLA association in the pathogenesis of autoimmune disorders. Curr Opin Immunol. 2011;23(6):732–8 [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t Review].

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Spurkland A, Ingvarsson G, Falk ES, Knutsen I, Sollid LM, Thorsby E. Dermatitis herpetiformis and celiac disease are both primarily associated with the HLA-DQ (alpha 1*0501, beta 1*02) or the HLA-DQ (alpha 1*03, beta 1*0302) heterodimers. Tissue Antigens. 1997;49(1):29–34 [Research Support, Non-U.S. Gov’t].

    Article  CAS  PubMed  Google Scholar 

  7. Kagnoff MF. Celiac disease: pathogenesis of a model immunogenetic disease. J Clin Invest. 2007;117(1):41–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Marietta EV, Murray JA. Animal models to study gluten sensitivity. Semin Immunopathol. 2012;34(4):497–511 [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t Review].

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Marietta EV, Schuppan D, Murray JA. In vitro and in vivo models of celiac disease. Expert Opin Drug Discov. 2009;4(11):1113–23.

    Article  CAS  PubMed  Google Scholar 

  10. Molberg O, McAdam SN, Korner R, Quarsten H, Kristiansen C, Madsen L, et al. Tissue transglutaminase selectively modifies gliadin peptides that are recognized by gut-derived T cells in celiac disease. Nat Med. 1998;4(6):713–7 [Research Support, Non-U.S. Gov’t].

    Article  CAS  PubMed  Google Scholar 

  11. Bethune MT, Ribka E, Khosla C, Sestak K. Transepithelial transport and enzymatic detoxification of gluten in gluten-sensitive rhesus macaques. PLoS One. 2008;3(3):e1857 [Research Support, N.I.H., Extramural].

    Article  PubMed Central  PubMed  Google Scholar 

  12. Bethune MT, Borda JT, Ribka E, Liu MX, Phillippi-Falkenstein K, Jandacek RJ, et al. A non-human primate model for gluten sensitivity. PLoS One. 2008;3(2):e1614 [Research Support, N.I.H., Extramural].

    Article  PubMed Central  PubMed  Google Scholar 

  13. Sestak K, Mazumdar K, Midkiff CC, Dufour J, Borda JT, Alvarez X. Recognition of epidermal transglutaminase by IgA and tissue transglutaminase 2 antibodies in a rare case of Rhesus dermatitis. J Vis Exp. 2011;58:Pii: 3154 [Research Support, N.I.H., Extramural Video-Audio Media].

    Google Scholar 

  14. Batt RM, Carter MW, McLean L. Morphological and biochemical studies of a naturally occurring enteropathy in the Irish setter dog: a comparison with coeliac disease in man. Res Vet Sci. 1984;37(3):339–46 [Comparative Study Research Support, Non-U.S. Gov’t].

    CAS  PubMed  Google Scholar 

  15. Hall EJ, Batt RM. Dietary modulation of gluten sensitivity in a naturally occurring enteropathy of Irish setter dogs. Gut. 1992;33(2):198–205 [Research Support, Non-U.S. Gov’t].

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Polvi A, Garden OA, Houlston RS, Maki M, Batt RM, Partanen J. Genetic susceptibility to gluten sensitive enteropathy in Irish setter dogs is not linked to the major histocompatibility complex. Tissue Antigens. 1998;52(6):543–9 [Research Support, Non-U.S. Gov’t].

    Article  CAS  PubMed  Google Scholar 

  17. Hall EJ, Carter SD, Barnes A, Batt RM. Immune responses to dietary antigens in gluten-sensitive enteropathy of Irish setters. Res Vet Sci. 1992;53(3):293–9 [Research Support, Non-U.S. Gov’t].

    Article  CAS  PubMed  Google Scholar 

  18. van der Kolk JH, van Putten LA, Mulder CJ, Grinwis GC, Reijm M, Butler CM, et al. Gluten-dependent antibodies in horses with inflammatory small bowel disease (ISBD). Vet Q. 2012;32(1):3–11.

    Article  PubMed  Google Scholar 

  19. Stepankova R, Tlaskalova-Hogenova H, Sinkora J, Jodl J, Fric P. Changes in jejunal mucosa after long-term feeding of germfree rats with gluten. Scand J Gastroenterol. 1996;31(6):551–7 [Research Support, Non-U.S. Gov’t].

    Article  CAS  PubMed  Google Scholar 

  20. Papista C, Gerakopoulos V, Kourelis A, Sounidaki M, Kontana A, Berthelot L, et al. Gluten induces coeliac-like disease in sensitised mice involving IgA, CD71 and transglutaminase 2 interactions that are prevented by probiotics. Lab Invest. 2012;92(4):625–35 [Research Support, Non-U.S. Gov’t].

    Article  CAS  PubMed  Google Scholar 

  21. Freitag TL, Rietdijk S, Junker Y, Popov Y, Bhan AK, Kelly CP, et al. Gliadin-primed CD4 + CD45RBlowCD25- T cells drive gluten-dependent small intestinal damage after adoptive transfer into lymphopenic mice. Gut. 2009;58(12):1597–605 [Research Support, N.I.H., Extramural].

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Black KE, Murray JA, David CS. HLA-DQ determines the response to exogenous wheat proteins: a model of gluten sensitivity in transgenic knockout mice. J Immunol. 2002;169(10):5595–600 [Research Support, U.S. Gov’t, P.H.S.].

    CAS  PubMed  Google Scholar 

  23. Verdu EF, Huang X, Natividad J, Lu J, Blennerhassett PA, David CS, et al. Gliadin-dependent neuromuscular and epithelial secretory responses in gluten-sensitive HLA-DQ8 transgenic mice. Am J Physiol Gastrointest Liver Physiol. 2008;294(1):G217–25 [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t].

    Article  CAS  PubMed  Google Scholar 

  24. Chen Z, Dudek N, Wijburg O, Strugnell R, Brown L, Deliyannis G, et al. A 320-kilobase artificial chromosome encoding the human HLA DR3-DQ2 MHC haplotype confers HLA restriction in transgenic mice. J Immunol. 2002;168(6):3050–6 [Research Support, Non-U.S. Gov’t].

    CAS  PubMed  Google Scholar 

  25. Chen D, Ueda R, Harding F, Patil N, Mao Y, Kurahara C, et al. Characterization of HLA DR3/DQ2 transgenic mice: a potential humanized animal model for autoimmune disease studies. Eur J Immunol. 2003;33(1):172–82 [Research Support, U.S. Gov’t, Non-P.H.S.].

    Article  CAS  PubMed  Google Scholar 

  26. de Kauwe AL, Chen Z, Anderson RP, Keech CL, Price JD, Wijburg O, et al. Resistance to celiac disease in humanized HLA-DR3-DQ2-transgenic mice expressing specific anti-gliadin CD4+ T cells. J Immunol. 2009;182(12):7440–50 [Research Support, Non-U.S. Gov’t].

    Article  PubMed  Google Scholar 

  27. Bjarnason I, Takeuchi K. Intestinal permeability in the pathogenesis of NSAID-induced enteropathy. J Gastroenterol. 2009;44 Suppl 19:23–9.

    Article  CAS  PubMed  Google Scholar 

  28. Pierre P, Denis O, Bazin H, Mbongolo Mbella E, Vaerman JP. Modulation of oral tolerance to ovalbumin by cholera toxin and its B subunit. Eur J Immunol. 1992;22(12):3179–82 [Research Support, Non-U.S. Gov’t].

    Article  CAS  PubMed  Google Scholar 

  29. Garside P, Felstein MV, Green EA, Mowat AM. The role of interferon alpha/beta in the induction of intestinal pathology in mice. Immunology. 1991;74(2):279–83 [Research Support, Non-U.S. Gov’t].

    CAS  PubMed Central  PubMed  Google Scholar 

  30. Zhou R, Wei H, Sun R, Tian Z. Recognition of double-stranded RNA by TLR3 induces severe small intestinal injury in mice. J Immunol. 2007;178(7):4548–56 [Research Support, Non-U.S. Gov’t].

    CAS  PubMed  Google Scholar 

  31. Zhou R, Wei H, Sun R, Zhang J, Tian Z. NKG2D recognition mediates Toll-like receptor 3 signaling-induced breakdown of epithelial homeostasis in the small intestines of mice. Proc Natl Acad Sci USA. 2007;104(18):7512–5 [Research Support, Non-U.S. Gov’t].

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Reuter BK, Davies NM, Wallace JL. Nonsteroidal anti-inflammatory drug enteropathy in rats: role of permeability, bacteria, and enterohepatic circulation. Gastroenterology. 1997;112(1):109–17 [Research Support, Non-U.S. Gov’t].

    Article  CAS  PubMed  Google Scholar 

  33. Natividad JM, Huang X, Slack E, Jury J, Sanz Y, David C, et al. Host responses to intestinal microbial antigens in gluten-sensitive mice. PLoS One. 2009;4(7):e6472 [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t].

    Article  PubMed Central  PubMed  Google Scholar 

  34. Silva MA, Jury J, Sanz Y, Wiepjes M, Huang X, Murray JA, et al. Increased bacterial translocation in gluten-sensitive mice is independent of small intestinal paracellular permeability defect. Dig Dis Sci. 2012;57(1):38–47 [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t].

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. D’Arienzo R, Stefanile R, Maurano F, Luongo D, Bergamo P, Mazzarella G, et al. A deregulated immune response to gliadin causes a decreased villus height in DQ8 transgenic mice. Eur J Immunol. 2009;39(12):3552–61 [Research Support, Non-U.S. Gov’t].

    Article  PubMed  Google Scholar 

  36. de Koning BA, van Dieren JM, Lindenbergh-Kortleve DJ, van der Sluis M, Matsumoto T, Yamaguchi K, et al. Contributions of mucosal immune cells to methotrexate-induced mucositis. Int Immunol. 2006;18(6):941–9 [Comparative Study Research Support, Non-U.S. Gov’t].

    Article  PubMed  Google Scholar 

  37. Du Pre MF, Kozijn AE, van Berkel LA, ter Borg MN, Lindenbergh-Kortleve D, Jensen LT, et al. Tolerance to ingested deamidated gliadin in mice is maintained by splenic, type 1 regulatory T cells. Gastroenterology. 2011;141(2):610–20. 20.e1-2 [Research Support, Non-U.S. Gov’t].

    Article  PubMed  Google Scholar 

  38. Izzo V, Pinelli M, Tinto N, Esposito MV, Cola A, Sperandeo MP, et al. Improving the estimation of celiac disease sibling risk by non-HLA genes. PLoS One. 2011;6(11):e26920 [Research Support, Non-U.S. Gov’t].

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Dubois PC, Trynka G, Franke L, Hunt KA, Romanos J, Curtotti A, et al. Multiple common variants for celiac disease influencing immune gene expression. Nat Genet. 2010;42(4):295–302 [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t].

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Gianfrani C, Troncone R, La Cava A. Autoimmunity and celiac disease. Mini Rev Med Chem. 2008;8(2):129–34 [Research Support, N.I.H., Extramural Review].

    Article  CAS  PubMed  Google Scholar 

  41. Stamnaes J, Fleckenstein B, Sollid LM. The propensity for deamidation and transamidation of peptides by transglutaminase 2 is dependent on substrate affinity and reaction conditions. Biochim Biophys Acta. 2008;1784(11):1804–11 [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t].

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Korponay-Szabo IR, Halttunen T, Szalai Z, Laurila K, Kiraly R, Kovacs JB, et al. In vivo targeting of intestinal and extraintestinal transglutaminase 2 by coeliac autoantibodies. Gut. 2004;53(5):641–8 [Research Support, Non-U.S. Gov’t].

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Di Niro R, Ziller F, Florian F, Crovella S, Stebel M, Bestagno M, et al. Construction of miniantibodies for the in vivo study of human autoimmune diseases in animal models. BMC Biotechnol. 2007;7:46 [Research Support, Non-U.S. Gov’t].

    Article  PubMed Central  PubMed  Google Scholar 

  44. Di Niro R, Sblattero D, Florian F, Stebel M, Zentilin L, Giacca M, et al. Anti-idiotypic response in mice expressing human autoantibodies. Mol Immunol. 2008;45(6):1782–91 [Research Support, Non-U.S. Gov’t].

    Article  PubMed  Google Scholar 

  45. De Laurenzi V, Melino G. Gene disruption of tissue transglutaminase. Mol Cell Biol. 2001;21(1):148–55 [Research Support, Non-U.S. Gov’t].

    Article  PubMed Central  PubMed  Google Scholar 

  46. Dafik L, Albertelli M, Stamnaes J, Sollid LM, Khosla C. Activation and inhibition of transglutaminase 2 in mice. PLoS One. 2012;7(2):e30642 [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t].

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Jelinkova L, Tuckova L, Cinova J, Flegelova Z, Tlaskalova-Hogenova H. Gliadin stimulates human monocytes to production of IL-8 and TNF-alpha through a mechanism involving NF-kappaB. FEBS Lett. 2004;571(1–3):81–5 [Research Support, Non-U.S. Gov’t].

    Article  CAS  PubMed  Google Scholar 

  48. Di Sabatino A, Ciccocioppo R, Cupelli F, Cinque B, Millimaggi D, Clarkson MM, et al. Epithelium derived interleukin 15 regulates intraepithelial lymphocyte Th1 cytokine production, cytotoxicity, and survival in coeliac disease. Gut. 2006;55(4):469–77.

    Article  PubMed Central  PubMed  Google Scholar 

  49. Meresse B, Malamut G, Cerf-Bensussan N. Celiac disease: an immunological jigsaw. Immunity. 2012;36(6):907–19 [Research Support, Non-U.S. Gov’t Review].

    Article  CAS  PubMed  Google Scholar 

  50. Ohta N, Hiroi T, Kweon MN, Kinoshita N, Jang MH, Mashimo T, et al. IL-15-dependent activation-induced cell death-resistant Th1 type CD8 alpha beta + NK1.1+ T cells for the development of small intestinal inflammation. J Immunol. 2002;169(1):460–8 [Research Support, Non-U.S. Gov’t].

    CAS  PubMed  Google Scholar 

  51. Fehniger TA, Suzuki K, Ponnappan A, VanDeusen JB, Cooper MA, Florea SM, et al. Fatal leukemia in interleukin 15 transgenic mice follows early expansions in natural killer and memory phenotype CD8+ T cells. J Exp Med. 2001;193(2):219–31 [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S.].

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Yokoyama S, Takada K, Hirasawa M, Perera LP, Hiroi T. Transgenic mice that overexpress human IL-15 in enterocytes recapitulate both B and T cell-mediated pathologic manifestations of celiac disease. J Clin Immunol. 2011;31(6):1038–44 [Research Support, Non-U.S. Gov’t].

    Article  CAS  PubMed  Google Scholar 

  53. Yokoyama S, Perera PY, Waldmann TA, Hiroi T, Perera LP. Tofacitinib, a janus kinase inhibitor demonstrates efficacy in an IL-15 transgenic mouse model that recapitulates pathologic manifestations of celiac disease. J Clin Immunol. 2013;33(3):586–94.

    Article  CAS  PubMed  Google Scholar 

  54. Gentile NM, Murray JA, Pardi DS. Autoimmune enteropathy: a review and update of clinical management. Curr Gastroenterol Rep. 2012;14(5):380–5 [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t Review].

    Article  PubMed  Google Scholar 

  55. DePaolo RW, Abadie V, Tang F, Fehlner-Peach H, Hall JA, Wang W, et al. Co-adjuvant effects of retinoic acid and IL-15 induce inflammatory immunity to dietary antigens. Nature. 2011;471(7337):220–4 [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t].

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Senger S, Luongo D, Maurano F, Mazzeo MF, Siciliano RA, Gianfrani C, et al. Intranasal administration of a recombinant alpha-gliadin down-regulates the immune response to wheat gliadin in DQ8 transgenic mice. Immunol Lett. 2003;88(2):127–34.

    Article  CAS  PubMed  Google Scholar 

  57. Huibregtse IL, Marietta EV, Rashtak S, Koning F, Rottiers P, David CS, et al. Induction of antigen-specific tolerance by oral administration of Lactococcus lactis delivered immunodominant DQ8-restricted gliadin peptide in sensitized nonobese diabetic Abo Dq8 transgenic mice. J Immunol. 2009;183(4):2390–6 [Research Support, N.I.H., Extramural].

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. El Asmar R, Panigrahi P, Bamford P, Berti I, Not T, Coppa GV, et al. Host-dependent zonulin secretion causes the impairment of the small intestine barrier function after bacterial exposure. Gastroenterology. 2002;123(5):1607–15 [In Vitro Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S.].

    Article  PubMed  Google Scholar 

  59. Lammers KM, Lu R, Brownley J, Lu B, Gerard C, Thomas K, et al. Gliadin induces an increase in intestinal permeability and zonulin release by binding to the chemokine receptor CXCR3. Gastroenterology. 2008;135(1):194–204. e3 [Research Support, N.I.H., Extramural].

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  60. Hancock WW, Lu B, Gao W, Csizmadia V, Faia K, King JA, et al. Requirement of the chemokine receptor CXCR3 for acute allograft rejection. J Exp Med. 2000;192(10):1515–20 [Research Support, U.S. Gov’t, P.H.S.].

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. Nie L, Xiang RL, Liu Y, Zhou WX, Jiang L, Lu B, et al. Acute pulmonary inflammation is inhibited in CXCR3 knockout mice after short-term cigarette smoke exposure. Acta Pharmacol Sin. 2008;29(12):1432–9 [Research Support, Non-U.S. Gov’t].

    Article  CAS  PubMed  Google Scholar 

  62. Levy JE, Jin O, Fujiwara Y, Kuo F, Andrews NC. Transferrin receptor is necessary for development of erythrocytes and the nervous system. Nat Genet. 1999;21(4):396–9 [Comparative Study Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S.].

    Article  CAS  PubMed  Google Scholar 

  63. Megiorni F, Mora B, Bonamico M, Barbato M, Nenna R, Maiella G, et al. HLA-DQ and risk gradient for celiac disease. Hum Immunol. 2009;70(1):55–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

This work was supported in part by NIH grant DK071003 and Mayo Foundation for Medical Education and Research.

Conflicts of Interest

The authors have no conflicts of interest to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph A. Murray M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Marietta, E.V., Rubio-Tapia, A., Murray, J.A. (2014). Using Animal Models of Celiac Disease to Understand the Role of MHC II. In: Rampertab, S., Mullin, G. (eds) Celiac Disease. Clinical Gastroenterology. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4614-8560-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-8560-5_6

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4614-8559-9

  • Online ISBN: 978-1-4614-8560-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics