Skip to main content

Intracranial Pressure and SvjO2

  • Chapter
  • First Online:
Monitoring Technologies in Acute Care Environments

Abstract

Intracranial pressure monitoring gives insight into pathophysiological derangement of intracerebral hemodynamics. It may be used to direct and titrate therapy targeted towards optimizing cerebral perfusion and oxygenation, by manipulation of water and blood content of the intracranial cavity. Noninvasive methods are increasingly investigated but suffer challenges in accuracy and pragmatic use. The various invasive approaches include direct monitoring of the ventricular system of the brain, which remains the gold standard. Intraparenchymal methods include a range of fiberoptic and piezoelectric transducers. Combination devices allow brain oxygen tension or brain compliance monitoring. Limitations revolve around the infection risk of the fluid channel in ventricular pressure transduction, as well as accuracy and drift problems in the parenchymal devices. Jugular bulb saturation monitoring (SvjO2) of the cranial venous outflow in combination with the Fick principle provides an estimate of the adequacy of cerebral perfusion to meet cerebral metabolic demand. With intermittent sampling and continuous catheter measurement techniques, it can also provide jugular bulb pressure estimates as well as arteriovenous difference in lactate. Its limitations reside in its averaging of cortical supply versus demand, which limits sensitivity to regional problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yukatake Y, Yasui M. Regulation of water permeability through aquaporin-4. Neuroscience. 2010;168(4):885–91.

    Article  Google Scholar 

  2. Badaut J, Ashwal S, Obenaus A. Aquaporins in cerebrovascular disease: a target for treatment of brain edema? Cerebrovasc Dis. 2011;31(6):521–31.

    Article  CAS  PubMed  Google Scholar 

  3. Marmarou A, Maset AL, Ward JD, Choi S, Brooks D, Lutz HA, et al. Contribution of CSF and vascular factors to elevation of ICP in severely head-injured patients. J Neurosurg. 1987;66:883–90.

    Article  CAS  PubMed  Google Scholar 

  4. Czosnyka M, Richards HK, Czosnyka Z, Piechnik S, Pickard JD, Chir M. Vascular components of cerebrospinal fluid compensation. J Neurosurg. 1999;90:752–9.

    Article  CAS  PubMed  Google Scholar 

  5. Aaslid R. The Doppler principle applied to measurements of blood flow velocity in cerebral arteries. In: Transcranial Doppler sonography. Vienna/New York: Springer; 1986. p. 22–38.

    Chapter  Google Scholar 

  6. Arts M, Roevros J. On the instantaneous measurement of blood flow by ultrasonic means. Med Biol Eng. 1972;10:23–30.

    Article  CAS  PubMed  Google Scholar 

  7. Schmidt B, Klingelhöfer J, Schwarze JJ, Sander D, Wittich I. Noninvasive prediction of intracranial pressure curves using transcranial doppler ultrasonography and blood pressure curves. Stroke. 1997;28(12):2465–72.

    Article  CAS  PubMed  Google Scholar 

  8. Hancock M, Mahajan R, Athanassiou L. Noninvasive estimation of cerebral perfusion pressure and zero flow pressure in healthy volunteers: the effects of changes in end-tidal carbon dioxide. Anesth Analg. 2003;96(3):847–51.

    Article  PubMed  Google Scholar 

  9. Schmidt B, Czsnyka M, Raabe A, Yahya H, Schwarze JJ, Sackerer D, et al. Adaptive noninvasive assessment of intracranial pressure and cerebral autoregulation. Stroke. 2003;34(1):84–9.

    Article  PubMed  Google Scholar 

  10. Kakarla U, Kim LJ, Chang SW, Theodore N, Spetzler RF. Safety and accuracy of bedside external ventricular drain placement. Neurosurgery. 2008;63(1 Suppl 1):162–7.

    Google Scholar 

  11. Binz DD, Toussaint 3rd LG, Friedman JA. Hemorrhagic complications of ventriculostomy placement: a meta-analysis. Neurocrit Care. 2009;10:253–6.

    Article  PubMed  Google Scholar 

  12. Lozier A, Sciacca RR, Romagnoli MF, Connolly Jr ES. Ventriculostomy-related infections: a critical review of the literature. Neurosurgery. 2002;51(1):170–82.

    Article  PubMed  Google Scholar 

  13. TSE TS, Cheng KF, Wong KS, Pang KY, and Wong CK. Ventriculostomy and infection: a 4-year review in a local hospital. Surg Neurol Int. 2010;1:47. (Published online Sep 9, 2010. doi:10.4103/2152-7806.69033.

    Google Scholar 

  14. Saladino A, White JB, Wijdicks EF, Lanzino G. Malplacement of ventricular catheters by neurosurgeons: a single institution experience. Neurocrit Care. 2009;10(2):248–52.

    Article  PubMed  Google Scholar 

  15. O’Leary S, Kole MK, Hoover DA, Hysell SE, Thomas A, Shaffrey CI. Efficacy of the Ghajar guide revisited: a prospective study. J Neurosurg. 2000;92(5):801–3.

    Article  PubMed  Google Scholar 

  16. Alleyne Jr C, Hassan M, Zabramski JM. The efficacy and cost of prophylactic and periprocedural antibiotics in patients with external ventricular drains. Neurosurgery. 2000;47(5):1124–9.

    Article  PubMed  Google Scholar 

  17. Wong G, Poon WS, Wai S, Yu LM, Lyon D, Lam JM. Failure of regular external ventricular drain exchange to reduce cerebrospinal fluid infection: result of a randomized control trial. J Neurosurg. 2002;73(6):759–61.

    CAS  Google Scholar 

  18. Pople I, Poon W, Assaker R, Mathieu D, Iantosca M, Wang E, et al. Comparison of infection rate with the use of antibiotic-impregnated vs standard extraventricular drainage devices: a prospective, randomized controlled trial. Neurosurgery. 2012;71(1):6–13.

    Article  PubMed  Google Scholar 

  19. North B, Reilly P. Comparison among three methods of intracranial pressure recording. Neurosurgery. 1986;18(6):730–2.

    Article  CAS  PubMed  Google Scholar 

  20. Letterio F. Subarachnoid Bolt. US Patent 4,438,773, 1984.

    Google Scholar 

  21. Mollman D, Rockswold GL, Ford SE. A clinical comparison of subarachnoid catheters to Ventriculostomy and subarachnoid bolts; a prospective study. J Neurosurg. 1988;68(5):737–41.

    Article  CAS  PubMed  Google Scholar 

  22. Miller J, Bobo H, Kapp JP. Inaccurate pressure readings for subarachnoid bolts. Neurosurgery. 1986;19(2):253–5.

    Article  CAS  PubMed  Google Scholar 

  23. Koskinen L, Olivecrona M. Clinical experience with the intraparenchymal intracranial pressure monitoring Codman MicroSensor system. Neurosurgery. 2005;56(4):693–8.

    Article  PubMed  Google Scholar 

  24. Hong W, Tu YK, Chen YS, Lien LM, Huang SJ. Subdural intracranial pressure monitoring in severe head injury: clinical experience with the Codman MicroSensor. Surg Neurol. 2006;66 Suppl 2:S8–13.

    Article  PubMed  Google Scholar 

  25. Gelabert-Gonzalez M, Ginesta-Galan V, Sernamito-García R, Allut AG, Bandin-Diéguez J, Rumbo RM. The Camino intracranial pressure device in clinical practice. Assessment in 1000 cases. Acta Neurochir (Wien). 2006;148:435–41.

    Article  CAS  Google Scholar 

  26. Poca MA, Sahuquillo J, Arribas M, Báguena M, Amorós S, Rubio E. Fiberoptic intraparenchymal brain pressure monitoring with the Camino V42 0 motor: reflections on our experience in 163 severely head injured patients. J Neurotrauma. 2002;19(4):439–48.

    Article  PubMed  Google Scholar 

  27. Lescot T, Reina V, Le Manach Y, Boroli F, Chauvet D, Boch AL, et al. In vivo accuracy of two intraparenchymal intracranial pressure monitors. Intensive Care Med. 2011;37:875–9.

    Article  PubMed  Google Scholar 

  28. Yao Y, Piper IR, Clutton RE, Whittle IR. An experimental evaluation of the Spiegelberg intracranial pressure and intracranial compliance monitor. Technical note. J Neurosurg. 2000;939(6):1072–7.

    Article  Google Scholar 

  29. Lang J, Beck J, Zimmermann M, Seifert V, Raabe A. Evaluation of intraparenchymal Spiegelberg pressure sensor. Neurosurgery. 2003;52(6):1455–9.

    Article  PubMed  Google Scholar 

  30. Czosnyka M, Czosnyka Z, Pickard JD. Laboratory testing of the Spiegelberg brain pressure monitor: a technical report. J Neurol. 1997;63:732–5.

    CAS  Google Scholar 

  31. Matta B, Lam AM. The rate of blood withdrawal affects the accuracy of jugular venous bulb: oxygen saturation measurements. Anesthesiology. 1997;86(4):806–8.

    Article  CAS  PubMed  Google Scholar 

  32. Henson L, Calalang C, Temp JA, Ward DS. Accuracy of a cerebral oximeter in healthy volunteers under isocapnic hypoxia. Anesthesiology. 1998;88(1):58–65.

    Article  CAS  PubMed  Google Scholar 

  33. Connett RJ, Honig CR, Gayeski TE, Brooks GA. Defining hypoxia: a systems view of VO2, glycolysis, energetics, and intracellularPO2. J Appl Physiol. 1990;68:833–42.

    CAS  PubMed  Google Scholar 

  34. Croughwell N, White WD, Smith LR, Davis RD, Glower Jr DD, Reves JG, et al. Jugular bulb saturations and mixed venous saturation during cardiopulmonary bypass. J Card Surg. 1995;10:503–8.

    Article  CAS  PubMed  Google Scholar 

  35. Robson M, Alston RP, Deary IJ, Andrews PJ, Souter MJ, Yates S. Cognition after coronary artery surgery is not related to postoperative jugular bulb oxyhemoglobin desaturation. Anesth Analg. 2000;196:1317–26.

    Article  Google Scholar 

  36. Kawano Y, Kawaguchi M, Inoue S, Horiuchi T, Sakamoto T, Yoshitani K, et al. Jugular bulb oxygen saturation under propofol or sevoflurane/nitrous oxide anesthesia during deliberate mild hypothermia in neurosurgical patients. J Neurosurg Anesthesiol. 2004;16(1):6–10.

    Article  PubMed  Google Scholar 

  37. Cruz J, Miner ME, Allen SJ, Alves WM, Gennarelli TA. Continuous monitoring of cerebral oxygenation in acute brain injury: assessment of cerebral hemodynamic reserve. Neurosurgery. 1991;2(9):743–9.

    Google Scholar 

  38. Cruz J, Gennarelli TA, Alves WM. Continuous monitoring of cerebral hemodynamic reserve in acute brain injury: relationship to changes in brain swelling. J Trauma. 1992;32:629–35.

    Article  CAS  PubMed  Google Scholar 

  39. Macmillan C, Andrews PJ, Easton VJ. Increase jugular bulb saturation is associated with poor outcome in traumatic brain injury. J Neurol Neurosurg Psychiatry. 2001;70:101–4.

    Article  CAS  PubMed  Google Scholar 

  40. McMillan CS. Increased jugular bulb saturation is associated with poor outcome in traumatic brain injury. J Neurol Neurosurg Psychiatry. 2001;70:101–4.

    Article  Google Scholar 

  41. Gopinath S, Valadka AB, Uzura M, Robertson CS. Comparison of jugular bulb saturations and brain tissue PO2 monitoring as monitors of cerebral ischemia after head injury. Crit Care Med. 1999;27(11):2337–45.

    Article  CAS  PubMed  Google Scholar 

  42. Coplin W, O’Keefe GE, Grady MS, Grant GA, March KS, Winn HR, et al. Thrombotic, infection and procedural complications of the jugular bulb catheter in the intensive care unit. Neurosurgery. 1997;41(1):101–9.

    Article  CAS  PubMed  Google Scholar 

  43. Giuno KM, Maia TR, Kunrath CL, Bizzi JJ. Treatment of intracranial hypertension. J Pediatr (Rio J). 2003;79(4):287–96.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael J. Souter MB,ChB, FRCA .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Algarra, N.N., Souter, M.J. (2014). Intracranial Pressure and SvjO2. In: Ehrenfeld, J., Cannesson, M. (eds) Monitoring Technologies in Acute Care Environments. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8557-5_29

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-8557-5_29

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-8556-8

  • Online ISBN: 978-1-4614-8557-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics