Photoplethysmography: Analysis of the Pulse Oximeter Waveform



A pulse oximeter is a noninvasive, accurate, continuous indicator of arterial oxygen saturation. It is considered one of the American Society of Anesthesia (ASA) standard monitors. The basic technology behind the pulse oximeter is photoelectric plethysmography, as reported by Hertzman. There are two components of the waveforms: the pulsatile component or AC portion and the static component or DC. Time and frequency domain are two different methods available for plethysmographic waveform analysis. Variability of the plethysmographic waveforms with ventilation provides an insight about functional volume status of the subjects. Plethysmographic waveform analysis provides more clinical information, and this what we are going to explore in this chapter.


Pulse Oximeter Fluid Responsiveness Pulse Pressure Variation Respiratory Frequency Lower Body Negative Pressure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Hertzman AB, Spielman C. Observations on the finger volume pulse recorded photoelectrically. Am J Physiol. 1937;119:334–5.Google Scholar
  2. 2.
    Foster AJ, Neuman C, Rovenstine E. Peripheral circulation during anesthesia, shock and hemorrhage; the digital plethysmograph as a clinical guide. Anesthesiology. 1945;6:246–57.CrossRefGoogle Scholar
  3. 3.
    Hertzman AB. The blood supply of various skin areas as estimated by the photoelectric plethysmograph. Am J Physiol. 1938;124:328–40.Google Scholar
  4. 4.
    Trafford JD, Lafferty K. What does photoplethysmography measure? Med Biol Eng Comput. 1984;22:479–80.PubMedCrossRefGoogle Scholar
  5. 5.
    Spigulis J. Optical noninvasive monitoring of skin blood pulsations. Appl Opt. 2005;44(10):1850–7. PubMed PMID: 15813522.PubMedCrossRefGoogle Scholar
  6. 6.
    Kim JM, Arakawa K, Benson KT, Fox DK. Pulse oximetry and circulatory kinetics associated with pulse volume amplitude measured by photoelectric plethysmography. Anesth Analg. 1986;65(12):1333–9. PubMed PMID: 3777465.PubMedCrossRefGoogle Scholar
  7. 7.
    Lima AP, Beelen P, Bakker J. Use of a peripheral perfusion index derived from the pulse oximetry signal as a noninvasive indicator of perfusion. Crit Care Med. 2002;30(6):1210–3. PubMed PMID: 12072670.PubMedCrossRefGoogle Scholar
  8. 8.
    Feldman JM. Can clinical monitors be used as scientific instruments? Anesth Analg. 2006;103(5):1071–2.PubMedCrossRefGoogle Scholar
  9. 9.
    Walton ZD, Kyriacou PA, Silverman DG, Shelley KH. Measuring venous oxygenation using the photoplethysmograph waveform. J Clin Monit Comput. 2010;24(4):295–303. PubMed PMID: 20644985. Epub 2010/07/21. eng.PubMedCrossRefGoogle Scholar
  10. 10.
    Thiele RH, Tucker-Schwartz JM, Lu Y, Gillies GT, Durieux ME. Technical communication: transcutaneous regional venous oximetry: a feasibility study. Anesth Analg. 2011;112(6):1353–7. PubMed PMID: 21613200. Epub 2011/05/27. eng.PubMedCrossRefGoogle Scholar
  11. 11.
    O’Rourke MF. The arterial pulse in health and disease. Am Heart J. 1971;82(5):687–702. PubMed PMID: 4940223.PubMedCrossRefGoogle Scholar
  12. 12.
    Stack Jr BC, Futran ND, Shohet MJ, Scharf JE. Spectral analysis of photoplethysmograms from radial forearm free flaps. Laryngoscope. 1998;108(9):1329–33. PubMed PMID: 9738751.PubMedCrossRefGoogle Scholar
  13. 13.
    Awad A, Ghobashy MA, Ouda W, Stout RG, Silverman DG, Shelley KH. Different responses of ear and finger pulse oximeter wave form to cold pressor test. Anesth Analg. 2001;92(6):1483–6. PubMed PMID: 11375830.PubMedCrossRefGoogle Scholar
  14. 14.
    Ezri T, Steinmetz A, Geva D, Szmuk P. Skin vasomotor reflex as a measure of depth of anesthesia. Anesthesiology. 1998;89(5):1281–2.CrossRefGoogle Scholar
  15. 15.
    Luginbuhl M, Reichlin F, Sigurdsson GH, Zbinden AM, Petersen-Felix S. Prediction of the haemodynamic response to tracheal intubation: comparison of laser-Doppler skin vasomotor reflex and pulse wave reflex. Br J Anaesth. 2002;89(3):389–97. PubMed PMID: 12402716.PubMedGoogle Scholar
  16. 16.
    Roizen MF, Horrigan RW, Frazer BM. Anesthetic doses blocking adrenergic (stress) and cardiovascular responses to incision–MAC BAR. Anesthesiology. 1981;54(5):390–8. PubMed PMID: 7224208.PubMedCrossRefGoogle Scholar
  17. 17.
    Kim J-M, Arakawa K, VonLintel T. Use of the pulse-wave monitor as a measurement of diagnostic sympathetic block and of surgical sympathectomy. Anesth Analg. 1975;54(3):289–96.PubMedCrossRefGoogle Scholar
  18. 18.
    Kim J-M, LaSalle AD, Parmley RT. Sympathetic recovery following lumbar epidural and spinal analgesia. Anesth Analg. 1977;56(3):352–5.PubMedCrossRefGoogle Scholar
  19. 19.
    Okuda Y, Kitajima Y, Asai T. Use of a pulse oximeter during performance of an axillary plexus block. Anaesthesia. 1997;52(7):717–8.PubMedGoogle Scholar
  20. 20.
    Galvin EM, Niehof S, Verbrugge SJ, Maissan I, Jahn A, Klein J, et al. Peripheral flow index is a reliable and early indicator of regional block success. Anesth Analg. 2006;103(1):239–43, table of contents. PubMed PMID: 16790660.PubMedCrossRefGoogle Scholar
  21. 21.
    Blanc VF, Haig M, Troli M, Sauve B. Computerized photo-plethysmography of the finger. Can J Anaesth. 1993;40(3):271–8. PubMed PMID: 8467550.PubMedCrossRefGoogle Scholar
  22. 22.
    Awad A, Ghobashy MA, Stout RG, Silverman DG, Shelley KH. How does the plethysmogram derived from the pulse oximeter relate to arterial blood pressure in coronary artery bypass graft patients? Anesth Analg. 2001;93(6):1466–71. PubMed PMID: 11726424.PubMedCrossRefGoogle Scholar
  23. 23.
    Lu S, Zhao H, Ju K, Shin K, Lee M, Shelley K, et al. Can photoplethysmography variability serve as an alternative approach to obtain heart rate variability information? J Clin Monit Comput. 2008;22(1):23–9. PubMed PMID: 17987395. Epub 2007/11/08. eng.PubMedCrossRefGoogle Scholar
  24. 24.
    Murray WB, Foster PA. The peripheral pulse wave – information overlooked. J Clin Monit. 1996;12(5):365–77.PubMedCrossRefGoogle Scholar
  25. 25.
    Murray W, Gorven A. Invasive vs. non-invasive blood pressure measurement: The influence of the pressure contour. S Afr Med J. 1991;79:134–9.PubMedGoogle Scholar
  26. 26.
    Dorlas JC, Nijboer JA. Photo-electric plethysmography as a monitoring device in anaesthesia. Application and interpretation. Br J Anaesth. 1985;57(5):524–30. PubMed PMID: 85199599.PubMedCrossRefGoogle Scholar
  27. 27.
    Ferrara J, Dyess D, Lasecki M. Surface oximetry: a new method to evaluate intestinal perfusion. Am Surg. 1988;54:10–4.PubMedGoogle Scholar
  28. 28.
    Graham B, Paulus D, Caffee H. Pulse oximetry for vascular monitoring in upper extremity replantation surgery. J Hand Surg Am. 1986;11A:687–92.CrossRefGoogle Scholar
  29. 29.
    Michard F, Reuter DA. Assessing cardiac preload or fluid responsiveness? It depends on the question we want to answer. Intensive Care Med. 2003;29(8):1396; author reply 7. PubMed PMID: 12827236.PubMedCrossRefGoogle Scholar
  30. 30.
    Marik PE, Baram M, Vahid B. Does central venous pressure predict fluid responsiveness? A systematic review of the literature and the tale of seven mares. Chest. 2008;134(1):172–8. PubMed PMID: 18628220. Epub 2008/07/17. eng.PubMedCrossRefGoogle Scholar
  31. 31.
    Osman D, Ridel C, Ray P, Monnet X, Anguel N, Richard C, et al. Cardiac filling pressures are not appropriate to predict hemodynamic response to volume challenge. Crit Care Med. 2007;35(1):64–8. PubMed PMID: 17080001. Epub 2006/11/03. eng.PubMedCrossRefGoogle Scholar
  32. 32.
    Michard F. Changes in arterial pressure during mechanical ventilation. Anesthesiology. 2005;103(2):419–28. PubMed PMID: 16052125.PubMedCrossRefGoogle Scholar
  33. 33.
    Feissel M, Michard F, Faller JP, Teboul JL. The respiratory variation in inferior vena cava diameter as a guide to fluid therapy. Intensive Care Med. 2004;30(9):1834–7. PubMed PMID: 15045170. Epub 2004/03/27. eng.PubMedCrossRefGoogle Scholar
  34. 34.
    Reuter DA, Felbinger TW, Schmidt C, Kilger E, Goedje O, Lamm P, et al. Stroke volume variations for assessment of cardiac responsiveness to volume loading in mechanically ventilated patients after cardiac surgery. Intensive Care Med. 2002;28(4):392–8. PubMed PMID: 11967591.PubMedCrossRefGoogle Scholar
  35. 35.
    Feissel M, Michard F, Mangin I, Ruyer O, Faller JP, Teboul JL. Respiratory changes in aortic blood velocity as an indicator of fluid responsiveness in ventilated patients with septic shock. Chest. 2001;119(3):867–73. PubMed PMID: 11243970. eng.PubMedCrossRefGoogle Scholar
  36. 36.
    Cannesson M, Attof Y, Rosamel P, Desebbe O, Joseph P, Metton O, et al. Respiratory variations in pulse oximetry plethysmographic waveform amplitude to predict fluid responsiveness in the operating room. Anesthesiology. 2007;106(6):1105–11. PubMed PMID: 17525584. Epub 2007/05/26. eng.PubMedCrossRefGoogle Scholar
  37. 37.
    Cannesson M, Delannoy B, Morand A, Rosamel P, Attof Y, Bastien O, et al. Does the Pleth variability index indicate the respiratory-induced variation in the plethysmogram and arterial pressure waveforms? Anesth Analg. 2008;106(4):1189–94, table of contents. PubMed PMID: 18349191. Epub 2008/03/20. eng.PubMedCrossRefGoogle Scholar
  38. 38.
    Cannesson M, Desebbe O, Rosamel P, Delannoy B, Robin J, Bastien O, et al. Pleth variability index to monitor the respiratory variations in the pulse oximeter plethysmographic waveform amplitude and predict fluid responsiveness in the operating theatre. Br J Anaesth. 2008;101(2):200–6. PubMed PMID: 18522935. Epub 2008/06/05. eng.PubMedCrossRefGoogle Scholar
  39. 39.
    Keller G, Cassar E, Desebbe O, Lehot JJ, Cannesson M. Ability of pleth variability index to detect hemodynamic changes induced by passive leg raising in spontaneously breathing volunteers. Crit Care. 2008;12(2):R37. PubMed PMID: 18325089. Pubmed Central PMCID: 2447559. Epub 2008/03/08. eng.PubMedCrossRefGoogle Scholar
  40. 40.
    Cannesson M, Besnard C, Durand PG, Bohé J, Jacques D. Relation between respiratory variations in pulse oximetry plethysmographic waveform amplitude and arterial pulse pressure in ventilated patients. Crit Care. 2005;9(5):562–8.CrossRefGoogle Scholar
  41. 41.
    Partridge BL. Use of pulse oximetry as a noninvasive indicator of intravascular volume status. J Clin Monit. 1987;3(4):263–8. PubMed PMID: 3681360.PubMedGoogle Scholar
  42. 42.
    Shamir M, Eidelman LA, Floman Y, Kaplan L, Pizov R. Pulse oximetry plethysmographic waveform during changes in blood volume. Br J Anaesth. 1999;82(2):178–81. PubMed PMID: 10364990.PubMedCrossRefGoogle Scholar
  43. 43.
    Natalini G, Rosano A, Franceschetti ME, Facchetti P, Bernardini A. Variations in arterial blood pressure and photoplethysmography during mechanical ventilation. Anesth Analg. 2006;103(5):1182–8.PubMedCrossRefGoogle Scholar
  44. 44.
    Khasnis A, Lokhandwala Y. Clinical signs in medicine: pulsus paradoxus. J Postgrad Med. 2002;48(1):46–9. PubMed PMID: 12082330.PubMedGoogle Scholar
  45. 45.
    Shelley KH, Jablonka DH, Awad AA, Stout RG, Rezkanna H, Silverman DG. What is the best site for measuring the effect of ventilation on the pulse oximeter waveform? Anesth Analg. 2006;103(2):372–7.PubMedCrossRefGoogle Scholar
  46. 46.
    Shelley KH, Awad AA, Stout RG, Silverman DG. The use of joint time frequency analysis to quantify the effect of ventilation on the pulse oximeter waveform. J Clin Monit Comput. 2006;20(2):81–7. PubMed PMID: 16779621.PubMedCrossRefGoogle Scholar
  47. 47.
    Masimo. Pleth Variability Index (PVI) – Technical Bulletin 3 2009 [8/5/2012].
  48. 48.
    Monnet X, Lamia B, Teboul J. Pulse oximeter as a sensor of fluid responsiveness: do we have our finger on the best solution? Crit Care. 2005;9(5):429–30.PubMedCrossRefGoogle Scholar
  49. 49.
    Atteya G, Kandiah N, Golembeski T, Smith B, Shelley K, Alian AA, editors. Plethysmographic and arterial waveform analysis during scoliosis cases using frequency analysis as a method of detecting changes in pre-load (venous) volume status. IAMPOV Meeting, Yale University, 2012.Google Scholar
  50. 50.
    Steele DW, Wright RO, Lee CM, Jay GD. Continuous noninvasive determination of pulsus paradoxus: a pilot study. Acad Emerg Med. 1995;2(10):894–900. PubMed PMID: 8542490.PubMedCrossRefGoogle Scholar
  51. 51.
    Alian AA, Galante NJ, Wardhan R, Silverman DG and Shelley KH. The impact of lower body negative pressure on the peripheral venous pressure waveform. Poster presentation (A574), ASA Annual meeting, 2010.
  52. 52.
    Galante NJ, Alian AA, Grimm LG, Silverman DG and Shelley KH. The ear PPG oscillates at the 0.12-0.18 Hz autonomic frequency during lower body negative pressure. Poster presentation (A1686), ASA Annual meeting, 2008.
  53. 53.
    Alian AA, Shelley KH. Respiratory physiology and the impact of different modes of ventilation on the photoplethysmographic waveform. Sensors. 2012;12(2):2236–54. PubMed PMID: 22438762. Pubmed Central PMCID: 3304164.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of AnesthesiologyYale University School of MedicineNew HavenUSA

Personalised recommendations