Skip to main content

Monitoring the Microcirculation in Critically Ill Patients

  • Chapter
  • First Online:
Book cover Monitoring Technologies in Acute Care Environments

Abstract

An increasing body of evidence exists emphasizing that microcirculatory alterations are associated with morbidity and mortality in a wide array of clinical scenarios. Despite efforts to optimize the balance between micro- and macrohemodynamics, high mortality rates still persist in the critically ill – especially with septic patients. The severity and persistence of microcirculatory abnormalities are believed to be directly associated with a poor prognosis in critically ill patients. In the present chapter, we review some of the techniques that have been used to monitor the microcirculation in critically ill patients. Handheld optical spectroscopic-based imaging instruments have been used extensively to clinically monitor and quantify perfusion abnormalities associated with profound microvascular perfusion heterogeneities. However, using these techniques to diagnose and guide resuscitation remains a challenge. Technological advances in microcirculatory image acquisition and analysis should provide a platform enabling microcirculation-targeted resuscitation by providing rapid clinical feedback on the efficacy of applied therapeutic strategies aimed at normalizing the microcirculation in critically ill patients. It is anticipated that more complete and personalized treatments based on resuscitation of the microcirculation will ultimately improve patient outcome in the near future as technology related to bedside microcirculatory monitoring progresses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. De Backer D, Donadello K, Sakr Y, Ospina-Tascon G, Salgado M, Scolletta S, et al. Microcirculatory alterations in patients with severe sepsis: impact of time of assessment and relationship with outcome. Crit Care Med. 2013;41(3):791–9.

    Article  PubMed  Google Scholar 

  2. Top AP, Ince C, de Meij N, van Dijk M, Tibboel D. Persistent low microcirculatory vessel density in nonsurvivors of sepsis in the pediatric intensive care. Crit Care Med. 2011;39(1):8–19.

    Article  PubMed  Google Scholar 

  3. Edul VS, Enrico C, Laviolle B, Vazquez AR, Ince C, Dubin A. Quantitative assessment of the microcirculation in healthy volunteers and in patients with septic shock. Crit Care Med. 2012;40(5):1443–8.

    Article  PubMed  Google Scholar 

  4. Booth J. A short history of blood pressure measurement. Proc R Soc Med. 1977;70(11):793–9.

    PubMed  CAS  Google Scholar 

  5. De Backer D, Creteur J, Preiser JC, Dubois MJ, Vincent JL. Microvascular blood flow is altered in patients with sepsis. Am J Respir Crit Care Med. 2002;166(1):98–104.

    Article  PubMed  Google Scholar 

  6. Trzeciak S, Dellinger RP, Parrillo JE, Guglielmi M, Bajaj J, Abate NL, et al. Early microcirculatory perfusion derangements in patients with severe sepsis and septic shock: relationship to hemodynamics, oxygen transport, and survival. Ann Emerg Med. 2007;49(1):88–98.

    Article  PubMed  Google Scholar 

  7. Groner W, Winkelman JW, Harris AG, Ince C, Bouma GJ, Messmer K, et al. Orthogonal polarization spectral imaging: a new method for study of the microcirculation. Nat Med. 1999;5(10):1209–12.

    Article  PubMed  CAS  Google Scholar 

  8. Jöbsis FF. Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters. Science. 1977;198(4323):1264–7.

    Article  PubMed  Google Scholar 

  9. Goedhart PT, Khalilzada M, Bezemer R, Merza J, Ince C. Sidestream Dark Field (SDF) imaging: a novel stroboscopic LED ring-based imaging modality for clinical assessment of the microcirculation. Opt Express. 2007;15(23):15101–14.

    Article  PubMed  CAS  Google Scholar 

  10. Kaplan LJ, McPartland K, Santora TA, Trooskin SZ. Start with a subjective assessment of skin temperature to identify hypoperfusion in intensive care unit patients. J Trauma. 2001;50(4):620–7.

    Article  PubMed  CAS  Google Scholar 

  11. Joly HR, Weil MH. Temperature of the great toe as an indication of the severity of shock. Circulation. 1969;39(1):131–8.

    Article  PubMed  CAS  Google Scholar 

  12. Marik PE. Handbook of evidence-based critical care. 2nd ed. New York: Springer; 2010.

    Book  Google Scholar 

  13. Boerma EC, Kuiper MA, Kingma WP, Egbers PH, Gerritsen RT, Ince C. Disparity between skin perfusion and sublingual microcirculatory alterations in severe sepsis and septic shock: a prospective observational study. Intensive Care Med. 2008;34(7):1294–8.

    Article  PubMed  Google Scholar 

  14. Neviere R, Mathieu D, Chagnon JL, Lebleu N, Millien JP, Wattel F. Skeletal muscle microvascular blood flow and oxygen transport in patients with severe sepsis. Am J Respir Crit Care Med. 1996;153(1):38–49.

    Article  Google Scholar 

  15. Boyle N, Roberts P, Ng B, Berkenstadt H, McLuckie A, Beale R, et al. Scanning laser Doppler is a useful technique to assess foot cutaneous perfusion during femoral artery cannulation. Crit Care. 1999;3(4):95–100.

    Article  PubMed  Google Scholar 

  16. Boyle NH, Manifold D, Jordan MH, Mason RC. Intraoperative assessment of colonic perfusion using scanning laser Doppler flowmetry during colonic resection. J Am Coll Surg. 2000;191(5):504–10.

    Article  PubMed  CAS  Google Scholar 

  17. Klijn E, Hulscher HC, Balvers RK, Holland WP, Bakker J, Vincent AJ, et al. Laser speckle imaging identification of increases in cortical microcirculatory blood flow induced by motor activity during awake craniotomy. J Neurosurg. 2013;118(2):280–6.

    Article  PubMed  Google Scholar 

  18. Bezemer R, Klijn E, Khalilzada M, Lima A, Heger M, van Bommel J, et al. Validation of near-infrared laser speckle imaging for assessing microvascular (re)perfusion. Microvasc Res. 2010;79(2):139–43.

    Article  PubMed  Google Scholar 

  19. Wahr JA, Tremper KK, Samra S, Delpy DT. Near-infrared spectroscopy: theory and applications. J Cardiothorac Vasc Anesth. 1996;10(3):406–18.

    Article  PubMed  CAS  Google Scholar 

  20. Poeze M. Tissue-oxygenation assessment using near-infrared spectroscopy during severe sepsis: confounding effects of tissue edema on StO2 values. Intensive Care Med. 2006;32(5):788–9.

    Article  PubMed  CAS  Google Scholar 

  21. Watzman HM, Kurth CD, Montenegro LM, Rome J, Steven JM, Nicolson SC. Arterial and venous contributions to near-infrared cerebral oximetry. Anesthesiology. 2000;93(4):947–53.

    Article  PubMed  CAS  Google Scholar 

  22. Skarda DE, Mulier KE, Myers DE, Taylor JH, Beilman GJ. Dynamic near-infrared spectroscopy measurements in patients with severe sepsis. Shock. 2007;27(4):348–53.

    Article  PubMed  CAS  Google Scholar 

  23. Creteur J, Carollo T, Soldati G, Büchele G, De Backer D, Vincent JL. The prognostic value of muscle StO2 in septic patients. Intensive Care Med. 2007;33(9):1549–56.

    Article  PubMed  Google Scholar 

  24. Mesquida J, Espinal C, Gruartmoner G, Masip J, Sabatier C, Baigorri F, Pinsky MR, Artigas A. Prognostic implications of tissue oxygen saturation in human septic shock. Intensive Care Med. 2012;38(4):592–7.

    Article  PubMed  CAS  Google Scholar 

  25. Tuma RF, Durán WN, Ley K. Microcirculation. 2nd ed. Amsterdam: Elsevier/Academic; 2008.

    Google Scholar 

  26. Wagner R. Erläuterungstafeln zur Physiologie und Entwicklungsgeschichte. Leipzig: Leopold Voss; 1839.

    Google Scholar 

  27. Sherman H, Klausner S, Cook WA. Incident dark-field illumination: a new method for microcirculatory study. Angiology. 1971;22(5):295–303.

    Article  PubMed  CAS  Google Scholar 

  28. Slaaf DW, Tangelder GJ, Reneman RS, Jäger K, Bollinger A. A versatile incident illuminator for intravital microscopy. Int J Microcirc Clin Exp. 1987;6(4):391–7.

    PubMed  CAS  Google Scholar 

  29. Bezemer R, Bartels SA, Bakker J, Ince C. Clinical review: clinical imaging of the sublingual microcirculation in the critically ill – where do we stand? Crit Care. 2012;16(3):224.

    Article  PubMed  Google Scholar 

  30. Mathura KR, Bouma GJ, Ince C. Abnormal microcirculation in brain tumours during surgery. Lancet. 2001;358(9294):1698–9.

    Article  PubMed  CAS  Google Scholar 

  31. Mathura KR, Vollebregt KC, Boer K, De Graaff JC, Ubbink DT, Ince C. Comparison of OPS imaging and conventional capillary microscopy to study the human microcirculation. J Appl Physiol. 2001;91(1):74–8.

    PubMed  CAS  Google Scholar 

  32. Goedhart PT, Khalilzada M, Bezemer R, Merza J, Ince C. Sidestream Dark Field (SDF) imaging: a novel stroboscopic LED ring-based imaging modality for clinical assessment of the microcirculation. Opt Express. 2007;15(23):15101–14.

    Article  PubMed  CAS  Google Scholar 

  33. Bezemer R, Dobbe JG, Bartels SA, Boerma EC, Elbers PWG, Heger M, et al. Rapid automatic assessment of microvascular density in sidestream dark field images. Med Biol Eng Comput. 2011;49(11):1269–78.

    Article  PubMed  Google Scholar 

  34. Sallisalmi M, Oksala N, Pettilä V, Tenhunen J. Evaluation of sublingual microcirculatory blood flow in the critically ill. Acta Anaesthesiol Scand. 2012;56(3):298–306.

    Article  PubMed  CAS  Google Scholar 

  35. Boerma EC, Mathura KR, van der Voort PH, Spronk PE, Ince C. Quantifying bedside-derived imaging of microcirculatory abnormalities in septic patients: a prospective validation study. Crit Care. 2005;9(6):R601–6.

    Article  PubMed  Google Scholar 

  36. Milstein DMJ, Romay E, Ince C. A novel computer-controlled high resolution video microscopy imaging system enables measuring mucosal subsurface focal depth for rapid acquisition of oral microcirculation video images. Intensive Care Med. 2012;38 Suppl 1:S271.

    Google Scholar 

  37. Ellis CG, Bateman RM, Sharpe MD, Sibbald WJ, Gill R. Effect of a maldistribution of microvascular blood flow on capillary O2 extraction in sepsis. Am J Physiol. 2002;282(1):H156–64.

    CAS  Google Scholar 

  38. De Backer D, Hollenberg S, Boerma C, Goedhart P, Büchele G, Ospina-Tascon G, et al. How to evaluate the microcirculation: report of a round table conference. Crit Care. 2007;11(5):R101.

    Article  PubMed  Google Scholar 

  39. Spanos A, Jhanji S, Vivian-Smith A, Harris T, Pearse RM. Early microvascular changes in sepsis and severe sepsis. Shock. 2010;33(4):387–91.

    Article  PubMed  Google Scholar 

  40. Sakr Y, Dubois MJ, De Backer D, Creteur J, Vincent JL. Persistent microcirculatory alterations are associated with organ failure and death in patients with septic shock. Crit Care Med. 2004;32:1825–31.

    Article  PubMed  Google Scholar 

  41. De Backer D, Creteur J, Dubois MJ, Sakr Y, Vincent JL. Microvascular alterations in patients with acute severe heart failure and cardiogenic shock. Am Heart J. 2004;147(1):91–9.

    Article  PubMed  Google Scholar 

  42. Lauten A, Ferrari M, Goebel B, Rademacher W, Schumm J, Uth O, et al. Microvascular tissue perfusion is impaired in acutely decompensated heart failure and improves following standard treatment. Eur J Heart Fail. 2011;13(7):711–7.

    Article  PubMed  CAS  Google Scholar 

  43. Bauer A, Kofler S, Thiel M, Eifert S, Christ F. Monitoring of the sublingual microcirculation in cardiac surgery using orthogonal polarization spectral imaging: preliminary results. Anesthesiol. 2007;107(6):939–45.

    Article  Google Scholar 

  44. den Uil CA, Lagrand WK, Spronk PE, van Domburg RT, Hofland J, Luthen C, et al. Impaired sublingual microvascular perfusion during surgery with cardiopulmonary bypass: a pilot study. J Thorac Cardiovasc Surg. 2008;136(1):129–34.

    Article  Google Scholar 

  45. Pranskunas A, Koopmans M, Koetsier PM, Pilvinis V, Boerma EC. Microcirculatory blood flow as a tool to select ICU patients eligible for fluid therapy. Intensive Care Med. 2013;39(4):612–9.

    Article  PubMed  CAS  Google Scholar 

  46. Boerma CE, Ince C. The role of vasoactive agents in the resuscitation of microvascular perfusion and tissue oxygenation in critically ill patients. Intensive Care Med. 2010;36(12):2004–18.

    Article  PubMed  CAS  Google Scholar 

  47. Sakr Y, Chierego M, Piagnerelli M, Verdant C, Dubois MJ, Koch M, et al. Microvascular response to red blood cell transfusion in patients with severe sepsis. Crit Care Med. 2007;35(7):1639–44.

    Article  PubMed  Google Scholar 

  48. Ospina-Tascon G, Neves AP, Occhipinti G, Donadello K, Büchele G, Simion D, et al. Effects of fluids on microvascular perfusion in patients with severe sepsis. Intensive Care Med. 2010;36(6):949–55.

    Article  PubMed  Google Scholar 

  49. Pottecher J, Deruddre S, Teboul JL, Georger JF, Laplace C, Benhamou D, et al. Both passive leg raising and intravascular volume expansion improve sublingual microcirculatory perfusion in severe sepsis and septic shock patients. Intensive Care Med. 2010;36(11):1867–74.

    Article  PubMed  Google Scholar 

  50. Jhanji S, Stirling S, Patel N, Hinds CJ, Pearse RM. The effect of increasing doses of norepinephrine on tissue oxygenation and microvascular flow in patients with septic shock. Crit Care Med. 2009;37(6):1961–6.

    Article  PubMed  CAS  Google Scholar 

  51. Dubin A, Pozo MO, Casabella CA, Pálizas Jr F, Murias G, Moseinco MC, et al. Increasing arterial blood pressure with norepinephrine does not improve microcirculatory blood flow: a prospective study. Crit Care. 2009;13(3):R92.

    Article  PubMed  Google Scholar 

  52. Andersson A, Rundgren M, Kalman S, Rooyackers O, Brattstrom O, Oldner A, et al. Gut microcirculatory and mitochondrial effects of hyperdynamic endotoxaemic shock and norepinephrine treatment. Br J Anaesth. 2012;108(2):254–61.

    Article  PubMed  CAS  Google Scholar 

  53. Maier S, Hasibeder WR, Hengl C, Pajk W, Schwarz B, Margreiter J, et al. Effects of phenylephrine on the sublingual microcirculation during cardiopulmonary bypass. Br J Anaesth. 2009;102(4):485–91.

    Article  PubMed  CAS  Google Scholar 

  54. Weinberg JA, MacLennan PA, Vandromme-Cusick MJ, Angotti JM, Magnotti LJ, Kerby JD, et al. Microvascular response to red blood cell transfusion in trauma patients. Shock. 2012;37(3):276–81.

    Article  PubMed  Google Scholar 

  55. Yuruk K, Almac E, Bezemer R, Goedhart P, de Mol B, Ince C. Blood transfusions recruit the microcirculation during cardiac surgery. Transfusion. 2011;51(5):961–7.

    Article  PubMed  Google Scholar 

  56. De Backer D, Creteur J, Dubois M-J, Sakr Y, Koch M, Verdant C, Vincent JL. The effects of dobutamine on microcirculatory alterations in patients with septic shock are independent of its systemic effects. Crit Care Med. 2006;34(2):403–8.

    Article  PubMed  Google Scholar 

  57. Boerma EC, Koopmans M, Konijn A, Kaiferova K, Bakker AJ, van Roon EN, et al. Effects of nitroglycerin on sublingual microcirculatory blood flow in patients with severe sepsis/septic shock after a strict resuscitation protocol: a double-blind randomized placebo controlled trial. Crit Care Med. 2010;38(1):93–100.

    Article  PubMed  CAS  Google Scholar 

  58. Spronk PE, Ince C, Gardien MJ, Mathura KR, Oudemans-van Straaten HM, Zandstra DF. Nitroglycerin in septic shock after intravascular volume resuscitation. Lancet. 2002;360(9343):1395–6.

    Article  PubMed  Google Scholar 

  59. Mik EG, Johannes T, Fries M. Clinical microvascular monitoring: a bright future without a future? Crit Care Med. 2009;37(11):2980–1.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduardo Romay Medina MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Medina, E.R., Milstein, D.M.J., Ince, C. (2014). Monitoring the Microcirculation in Critically Ill Patients. In: Ehrenfeld, J., Cannesson, M. (eds) Monitoring Technologies in Acute Care Environments. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8557-5_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-8557-5_15

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-8556-8

  • Online ISBN: 978-1-4614-8557-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics