Skip to main content

Coherent States from Square Integrable Representations

  • Chapter
  • First Online:
Coherent States, Wavelets, and Their Generalizations

Abstract

This chapter is devoted to a detailed development of the theory of square integrable group representations, including the resulting orthogonality relations. Then we study a particular class of semidirect product groups, namely, groups of the form \(G = {\mathbb{R}}^{n} \rtimes H\), where H is an n-dimensional closed subgroup of GL\((n, \mathbb{R})\). Several concrete examples are presented. Finally we generalize the theory to representations that are only square integrable on a homogeneous space. This allows one to treat CS of the Gilmore-Perelomov type and, in particular, CS of the Galilei group.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This is an unconventional notation for spherical harmonics, and it differs from the one used in Chap. 7.

References

  1. A. Arnéodo, F. Argoul, E. Bacry, J. Elezgaray, J.F. Muzy, Ondelettes, multifractales et turbulences – De l’ADN aux croissances cristallines (Diderot, Paris, 1995)

    Google Scholar 

  2. J. Dixmier, Les C*-algèbres et leurs représentations (Gauthier-Villars, Paris, 1964)

    Google Scholar 

  3. S.A. Gaal, Linear Analysis and Representation Theory (Springer, Berlin, 1973)

    Book  MATH  Google Scholar 

  4. E. Inönü, A study of the unitary representations of the Galilei group in relation to quantum mechanics. Ph.D. thesis, University of Ankara, 1954

    Google Scholar 

  5. T. Kato, Perturbation Theory for Linear Operators (Springer, Berlin, 1976)

    Book  MATH  Google Scholar 

  6. G.W. Mackey, Induced Representations of Groups and Quantum Mechanics (Benjamin, New York, 1968)

    MATH  Google Scholar 

  7. G.W. Mackey, Theory of Unitary Group Representations (University of Chicago Press, Chicago, 1976)

    MATH  Google Scholar 

  8. M. Reed, B. Simon, Methods of Modern Mathematical Physics I: Functional Analysis (Academic, New York, 1980)

    MATH  Google Scholar 

  9. M. Sugiura, Unitary Representations and Harmonic Analysis: An Introduction (North-Holland/Kodansha Ltd., Tokyo, 1990)

    MATH  Google Scholar 

  10. S.T. Ali, E. Prugovečki, Mathematical problems of stochastic quantum mechanics: Harmonic analysis on phase space and quantum geometry. Acta Appl. Math. 6, 1–18 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  11. S.T. Ali, E. Prugovečki, Harmonic analysis and systems of covariance for phase space representation of the Poincaré group. Acta Appl. Math. 6, 47–62 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  12. P. Aniello, G. Cassinelli, E. De Vito, A. Levrero, Square-integrability of induced representations of semidirect products. Rev. Math. Phys. 10, 301–313 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  13. P. Aniello, G. Cassinelli, E. De Vito, A. Levrero, Wavelet transforms and discrete frames associated to semidirect products. J. Math. Phys. 39, 3965–3973 (1998)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. L. Baggett, K.F. Taylor, Groups with completely reducible regular representation. Proc. Amer. Math. Soc. 72, 593–600 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  15. S. Bergman, Über die Kernfunktion eines Bereiches und ihr Verhalten am Rande I. Reine Angw. Math. 169, 1–42 (1933)

    Google Scholar 

  16. G. Bernuau, Wavelet bases associated to a self-similar quasicrystal. J. Math. Phys. 39, 4213–4225 (1998)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  17. W.R. Bomstad, J.R. Klauder, Linearized quantum gravity using the projection operator formalism. Class. Quantum Grav. 23, 5961–5981 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  18. A.L. Carey, Group representations in reproducing kernel Hilbert spaces. Rep. Math. Phys. 14, 247–259 (1978)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. P. Carruthers, M.M. Nieto, Phase and angle variables in quantum mechanics. Rev. Mod. Phys. 40, 411–440 (1968)

    Article  ADS  Google Scholar 

  20. I. Daubechies, S. Maes, A nonlinear squeezing of the continuous wavelet transform based on auditory nerve models, in Wavelets in Medicine and Biology, ed. by A. Aldroubi, M. Unser (CRC Press, Boca Raton, 1996), pp. 527–546

    Google Scholar 

  21. M. Duval-Destin, R. Murenzi, Spatio-temporal wavelets: Application to the analysis of moving patterns, in Progress in Wavelet Analysis and Applications (Proc. Toulouse 1992), ed. by Y. Meyer, S. Roques (Ed. Frontières, Gif-sur-Yvette 1993), pp. 399–408

    Google Scholar 

  22. H.G. Feichtinger, K.H. Gröchenig, Banach spaces related to integrable group representations and their atomic decompositions II. Mh. Math. 108, 129–148 (1989)

    Article  MATH  Google Scholar 

  23. M. Flensted-Jensen, Discrete series for semisimple symmetric spaces. Ann. of Math. 111, 253–311 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  24. V. Fock, Zur Theorie der Wasserstoffatoms. Zs. f. Physik 98, 145–54 (1936)

    Article  ADS  Google Scholar 

  25. H. Führ, M. Mayer, Continuous wavelet transforms from semidirect products: Cyclic representations and Plancherel measure. J. Fourier Anal. Appl. 8, 375–396 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  26. D. Gabor, Theory of communication. J. Inst. Electr. Engrg.(London) 93, 429–457 (1946)

    Google Scholar 

  27. R. Godement, Sur les relations d’orthogonalité de V. Bargmann. C. R. Acad. Sci. Paris 255, 521–523, 657–659 (1947)

    MathSciNet  Google Scholar 

  28. C. Gonnet, B. Torrésani, Local frequency analysis with two-dimensional wavelet transform. Signal Proc. 37, 389–404 (1994)

    Article  MATH  Google Scholar 

  29. A. Grossmann, J. Morlet, T. Paul, Integral transforms associated to square integrable representations II: Examples. Ann. Inst. H. Poincaré 45, 293–309 (1986)

    MathSciNet  MATH  Google Scholar 

  30. A. Grossmann, R. Kronland-Martinet, J. Morlet, Reading and understanding the continuous wavelet transform, in Wavelets, Time-Frequency Methods and Phase Space (Proc. Marseille 1987), ed. by J.-M. Combes, A. Grossmann, P. Tchamitchian, 2nd edn. (Springer, Berlin, 1990), pp. 2–20

    Google Scholar 

  31. C. Heil, D. Walnut, Continuous and discrete wavelet transforms, SIAM Review 31, 628–666 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  32. M. Holschneider, Localization properties of wavelet transforms. J. Math. Phys. 34, 3227–3244 (1993)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  33. M. Holschneider, Wavelet analysis over abelian groups. Applied Comput. Harmon. Anal. 2, 52–60 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  34. L. Jacques, J-P. Antoine, Multiselective pyramidal decomposition of images: Wavelets with adaptive angular selectivity. Int. J. Wavelets Multires. Inform. Proc. 5, 785–814 (2007)

    Google Scholar 

  35. J.R. Klauder, R.F. Streater, Wavelets and the Poincaré half-plane. J. Math. Phys. 35, 471–478 (1994)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  36. A.B. Klimov, C. Muñoz, Coherent, isotropic and squeezed states in a N-qubit system. Phys. Scr. 87, 038110 (2013)

    Article  ADS  Google Scholar 

  37. J-M. Lévy-Leblond, Galilei group and Galilean invariance, in Group Theory and Its Applications, vol. II, ed. by E.M. Loebl (Academic, New York, 1971), pp. 221–299

    Google Scholar 

  38. J-M. Lévy-Leblond, On the conceptual nature of the physical constants. Riv. Nuovo Cim. 7, 187–214 (1977)

    Google Scholar 

  39. E.H. Lieb, The classical limit of quantum spin systems. Commun. Math. Phys. 31, 327–340 (1973)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  40. S. Majid, M. Rodriguez-Plaza, Random walk and the heat equation on superspace and anyspace. J. Math. Phys. 35, 3753–3760 (1994)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  41. E. Onofri, Dynamical quantization of the Kepler manifold. J. Math. Phys. 17, 401–408 (1976)

    Article  MathSciNet  ADS  Google Scholar 

  42. D. Pietrobon, P. Baldi, D. Marinucci, Integrated Sachs-Wolfe effect from the cross correlation of WMAP3 year and the NRAO VLA sky survey data: New results and constraints on dark energy. Phys. Rev. D 74, 043524 (2006)

    Article  ADS  Google Scholar 

  43. J. Renaud, The contraction of the SU(1,1) discrete series of representations by means of coherent states. J. Math. Phys. 37, 3168–3179 (1996)

    Article  MathSciNet  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ali, S.T., Antoine, JP., Gazeau, JP. (2014). Coherent States from Square Integrable Representations. In: Coherent States, Wavelets, and Their Generalizations. Theoretical and Mathematical Physics. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8535-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-8535-3_8

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-8534-6

  • Online ISBN: 978-1-4614-8535-3

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics