Skip to main content

Square Integrable and Holomorphic Kernels

  • Chapter
  • First Online:
Coherent States, Wavelets, and Their Generalizations

Abstract

This chapter is devoted to a systematic study of two special types of reproducing kernel Hilbert spaces, namely, those corresponding to square integrable kernels and to holomorphic kernels. The first case is illustrated by the construction of CS on the circle. This example suggests introducing action-angle variables, which are then used to extend the theory to a non-holomorphic set-up, namely, the so-called Gazeau–Klauder CS. The latter in turn lead to probabilistic considerations, that will be the focus of Chap. 11.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S.L. Adler, Quaternionic Quantum Mechanics and Quantum Fields (Oxford University Press, New York, 1995)

    MATH  Google Scholar 

  2. N.I. Akhiezer, The Classical Moment Problem and Some Related Questions in Analysis (Oliver and Boyd, Edinburgh and London, 1965)

    MATH  Google Scholar 

  3. A. Arnéodo, F. Argoul, E. Bacry, J. Elezgaray, J.F. Muzy, Ondelettes, multifractales et turbulences – De l’ADN aux croissances cristallines (Diderot, Paris, 1995)

    Google Scholar 

  4. D.H. Feng, J.R. Klauder, M. Strayer (eds.), Coherent States: Past, Present and Future (Proc. Oak Ridge 1993) (World Scientific, Singapore, 1994)

    Google Scholar 

  5. G. Gentili, C. Stoppato, D.C. Struppa, Regular Functions for a Quaternionic Variable. Springer Monographs in Mathematics (Springer, Berlin, 2013)

    Google Scholar 

  6. W. Magnus, F. Oberhettinger, R.P. Soni, Formulas and Theorems for the Special Functions of Mathematical Physics (Springer, Berlin, 1966)

    MATH  Google Scholar 

  7. J.A. Shohat, J.D. Tamarkin, The Problem of Moments (American Mathematical Society, Providence, RI, 1950)

    MATH  Google Scholar 

  8. M. Sugiura, Unitary Representations and Harmonic Analysis: An Introduction (North-Holland/Kodansha Ltd., Tokyo, 1990)

    MATH  Google Scholar 

  9. S.L. Adler, A.C. Millard, Coherent states in quaternionic quantum mechanics. J. Math. Phys. 38, 2117–2126 (1997)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. G.S. Agarwal, K. Tara, Nonclassical properties of states generated by the excitation on a coherent state. Phys. Rev. A 43, 492–497 (1991)

    Article  ADS  Google Scholar 

  11. S.T. Ali, M.E.H. Ismail, Some orthogonal polynomials arising from coherent states. J. Phys. A 45 125203 (2012) (16pp)

    Google Scholar 

  12. S.T. Ali, J-P. Antoine, J-P. Gazeau, Square integrability of group representations on homogeneous spaces. I. Reproducing triples and frames. Ann. Inst. H. Poincaré 55, 829–855 (1991)

    MathSciNet  MATH  Google Scholar 

  13. S.T. Ali, L. Balková, E.M.F. Curado, J-P. Gazeau, M.A. Rego-Monteiro, L.M.C.S. Rodrigues, K. Sekimoto, Non-commutative reading of the complex plane through Delone sequences. J. Math. Phys. 50, 043517 (2009)

    Google Scholar 

  14. S.T. Ali, T. Bhattacharyya, S.S. Roy, Coherent states on Hilbert modules, J. Phys. A: Math. Theor. 44, 275202 (2011)

    Article  MathSciNet  Google Scholar 

  15. J-P. Antoine, L. Jacques, P. Vandergheynst, Penrose tilings, quasicrystals, and wavelets, in Wavelet Applications in Signal and Image Processing VII, SPIE Proceedings, vol. 3813 (SPIE, Bellingham, WA, 1999), pp. 28–39

    Google Scholar 

  16. I.S. Averbuch, N.F. Perelman, Fractional revivals: Universality in the long-term evolution of quantum wave packets beyond the correspondence principle dynamics. Phys. Lett. A 139, 449–453 (1989)

    Article  ADS  Google Scholar 

  17. A.O. Barut, H. Kleinert, Transition probabilities of the hydrogen atom from noncompact dynamical groups. Phys. Rev. 156, 1541–1545 (1967)

    Article  ADS  Google Scholar 

  18. J. Ben Geloun, J. Hnybida, J.R. Klauder, Coherent states for continuous spectrum operators with non-normalizable fiducial states. J. Phys. A: Math. Theor. 45, 085301 (2012)

    Article  MathSciNet  ADS  Google Scholar 

  19. J.J. Benedetto, T.D. Andrews, Intrinsic wavelet and frame applications, in Independent Component Analyses, Wavelets, Neural Networks, Biosystems, and Nanoengineering IX ed. by H. Szu, L. Dai. SPIE Proceedings, vol. 8058, (SPIE, Bellingham, WA, 2011), p. 805802

    Google Scholar 

  20. F.A. Berezin, General concept of quantization. Commun. Math. Phys. 40, 153–174 (1975)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  21. H. Bergeron, From classical to quantum mechanics: How to translate physical ideas into mathematical language. J. Math. Phys. 42, 3983–4019 (2001)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  22. H. Bergeron, P. Siegl, A. Youssef, New SUSYQM coherent states for Pöschl-Teller potentials: A detailed mathematical analysis. J. Phys. A: Math. Theor. 45, 244028 (2012)

    Article  MathSciNet  ADS  Google Scholar 

  23. H. Bergeron, J-P. Gazeau, A. Youssef, Are the Weyl and coherent state descriptions physically equivalent? Phys. Lett. A 377, 598–605 (2013)

    Google Scholar 

  24. I. Bogdanova, P. Vandergheynst, J-P. Antoine, L. Jacques, M. Morvidone, Stereographic wavelet frames on the sphere,. Appl. Comput. Harmon. Anal. 19, 223–252 (2005)

    Google Scholar 

  25. V.V. Borzov, E.V. Damaskinsky, Generalized coherent states for classical orthogonal polynomials. Day on Diffraction (2002). arXiv:math.QA/0209181v1 (SPb 2002)

    Google Scholar 

  26. K. Bouyoucef, D. Fraix-Burnaix, S. Roques, Interactive deconvolution with error analysis (IDEA) in astronomical imaging: Application to aberrated HST images on SN1987A, M87 and 3C66B. Astron. Astroph. Suppl. Ser. 121, 1–6 (1997)

    Article  Google Scholar 

  27. S.H.H. Chowdhury, S.T. Ali, All the groups of signal analysis from the (1+1) affine Galilei group. J. Math. Phys. 52, 103504 (2011)

    Article  MathSciNet  ADS  Google Scholar 

  28. S. Dahlke, P. Maass, The affine uncertainty principle in one and two dimensions. Comp. Math. Appl. 30, 293–305 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  29. C. Daskaloyannis, K. Ypsilantis, A deformed oscillator with Coulomb energy spectrum. J. Phys. A: Math. Gen. 25, 4157–4166 (1992)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  30. I. Daubechies, On the distributions corresponding to bounded operators in the Weyl quantization. Commun. Math. Phys. 75, 229–238 (1980)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  31. S. De Bièvre, J.A. González, Semiclassical behaviour of coherent states on the circle, in Quantization and Coherent States Methods in Physics, ed. by A. Odzijewicz et al. (World Scientific, Singapore, 1993)

    Google Scholar 

  32. S. De Bièvre, A.E. Gradechi, Quantum mechanics and coherent states on the anti-de Sitter space-time and their Poincaré contraction. Ann. Inst. H. Poincaré 57, 403–428 (1992)

    MATH  Google Scholar 

  33. J-P. Gazeau, P. Monceau, Generalized coherent states for arbitrary quantum systems, in Colloquium M. Flato (Dijon, Sept. 99), vol. II (Klüwer, Dordrecht, 2000), pp. 131–144

    Google Scholar 

  34. J-P. Gazeau, M. Novello, The question of mass in (Anti-) de Sitter space-times. J. Phys. A: Math. Theor. 41, 304008 (2008)

    Google Scholar 

  35. J-P. Gazeau, J. Patera, Tau-wavelets of Haar. J. Phys. A: Math. Gen. 29, 4549–4559 (1996)

    Google Scholar 

  36. G. Gentili, D.C. Struppa, A new theory of regular functions of a quaternionic variable. Adv. Math. 216, 279–301 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  37. C. Geyer, K. Daniilidis, Catadioptric projective geometry. Int. J. Comput. Vision 45, 223–243 (2001)

    Article  MATH  Google Scholar 

  38. X.Gonze, B. Amadon et al., ABINIT: First-principles approach to material and nanosystem properties. Computer Physics Comm. 180, 2582–2615 (2009)

    Article  ADS  Google Scholar 

  39. J. He, H. Liu, Admissible wavelets associated with the affine automorphism group of the Siegel upper half-plane. J. Math. Anal. Appl. 208, 58–70 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  40. M. Hongoh, Coherent states associated with the continuous spectrum of noncompact groups. J. Math. Phys. 18, 2081–2085 (1977)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  41. C.J. Isham, J.R. Klauder, Coherent states for n-dimensional Euclidean groups E(n) and their application. J. Math.Phys. 32, 607–620 (1991)

    Google Scholar 

  42. C. Johnston, On the pseudo-dilation representations of Flornes, Grossmann, Holschneider, and Torrésani. Appl. Comput. Harmon. Anal. 3, 377–385 (1997)

    MathSciNet  MATH  Google Scholar 

  43. A. Kleppner, R.L. Lipsman, The Plancherel formula for group extensions. Ann. Ec. Norm. Sup. 5, 459–516 (1972)

    MathSciNet  MATH  Google Scholar 

  44. K. Kowalski, J. Rembieliński, L.C. Papaloucas, Coherent states for a quantum particle on a circle. J. Phys. A: Math. Gen. 29, 4149–4167 (1996)

    Article  ADS  MATH  Google Scholar 

  45. K. Kowalski, J. Rembieliński, Quantum mechanics on a sphere and coherent states. J. Phys. A: Math. Gen. 33, 6035–6048 (2000)

    Article  ADS  MATH  Google Scholar 

  46. D. Marinucci, D. Pietrobon, A. Baldi, P. Baldi, P. Cabella, G. Kerkyacharian, P. Natoli, D. Picard, N. Vittorio, Spherical needlets for CMB data analysis. Mon. Not. R. Astron. Soc. 383, 539–545 (2008)

    Article  ADS  Google Scholar 

  47. A. Odzijewicz, M. Horowski, A. Tereszkiewicz, Integrable multi-boson systems and orthogonal polynomials. J. Phys. A: Math. Gen. 34, 4353–4376 (2001)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  48. G. Ólafsson, B. Ørsted, The holomorphic discrete series for affine symmetric spaces. J. Funct. Anal. 81, 126–159 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  49. Z. Pasternak-Winiarski, On reproducing kernels for holomorphic vector bundles, in Quantization and Infinite Dimensional Systems (Proc. Białowieza, Poland, 1993), ed. by J-P. Antoine, S.T. Ali, W. Lisiecki, I.M. Mladenov, A. Odzijewicz (Plenum Press, New York and London, 1994), pp. 109–112

    Chapter  Google Scholar 

  50. T. Paul, Affine coherent states and the radial Schrödinger equation I, preprint CPT-84/P.1710 (1984) (unpublished)

    Google Scholar 

  51. D. Potts, G. Steidl, M. Tasche, Kernels of spherical harmonics and spherical frames, in Advanced Topics in Multivariate Approximation, ed. by F. Fontanella, K. Jetter, P.J. Laurent (World Scientific, Singapore, 1996), pp. 287–301

    Google Scholar 

  52. B. Simon, The classical moment problem as a self-adjoint finite difference operator. Adv. Math. 137, 82–203 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  53. S. Sivakumar, Studies on nonlinear coherent states. J. Opt. B Quant, Semiclass. Opt. 2, R61–R75 (2000)

    Google Scholar 

  54. A. Solomon, A characteristic functional for deformed photon phenomenology. Phys. Lett. A 196, 29–34 (1994)

    Article  ADS  Google Scholar 

  55. K. Thirulagasanthar, S.T. Ali, Regular subspaces of a quaternionic Hilbert space from quaternionic Hermite polynomials and associated coherent states. J. Math. Phys. 54, 013506 (2013)

    Article  MathSciNet  ADS  Google Scholar 

  56. K. Thirulogasanthar, G. Honnouvo, A. Krzyzak, Coherent states and Hermite polynomials on quaternionic Hilbert spaces. J. Phys. A: Math. Theor. 43, 385205 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  57. A.S. Trushechkin, I.V. Volovich, Localization properties of squeezed quantum states in nanoscale space domains, preprint (2013). arXiv:1304.6277v1 [quant-ph]

    Google Scholar 

  58. K. Z̀yczkowski, Squeezed states in a quantum chaotic system. J. Phys. A: Math. Theor. 22, L1147–L1151 (1989)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ali, S.T., Antoine, JP., Gazeau, JP. (2014). Square Integrable and Holomorphic Kernels. In: Coherent States, Wavelets, and Their Generalizations. Theoretical and Mathematical Physics. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8535-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-8535-3_6

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-8534-6

  • Online ISBN: 978-1-4614-8535-3

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics