Advertisement

Hilbert Spaces with Reproducing Kernels and Coherent States

  • Syed Twareque Ali
  • Jean-Pierre Antoine
  • Jean-Pierre Gazeau
Chapter
Part of the Theoretical and Mathematical Physics book series (TMP)

Abstract

This chapter is again purely mathematical. The central theme is the concept of reproducing kernel Hilbert spaces and the attending measure problems, which are then used as a tool for constructing CS.

Keywords

Hilbert Space Measurable Field Orthonormal Basis Coherent State Positive Operator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. [Ali07]
    S.T. Ali, M. Engliš, Berezin-Toeplitz quantization over matrix domains, in Contributions in Mathematical Physics – A tribute to Gérard Emch, Ed. by S.T. Ali, K.B. Sinha (Hindustan Book Agency, New Delhi, India, 2007)Google Scholar
  2. [Arn95]
    A. Arnéodo, F. Argoul, E. Bacry, J. Elezgaray, J.F. Muzy, Ondelettes, multifractales et turbulences – De l’ADN aux croissances cristallines (Diderot, Paris, 1995)Google Scholar
  3. [Mes62]
    H. Meschkowsky, Hilbertsche Räume mit Kernfunktionen (Springer, Berlin, 1962)CrossRefGoogle Scholar
  4. [Tak79]
    M. Takesaki, Theory of Operator Algebras I (Springer, New York, 1979)CrossRefMATHGoogle Scholar
  5. [19]
    S.T. Ali, M. Engliš, J-P. Gazeau, Vector coherent states from Plancherel’s theorem and Clifford algebras. J. Phys. A 37, 6067–6089 (2004)MathSciNetADSCrossRefMATHGoogle Scholar
  6. [99]
    N. Aronszajn, Theory of reproducing kernels. Trans. Amer. Math. Soc. 66, 337–404 (1950)MathSciNetCrossRefGoogle Scholar
  7. [201]
    A. Cerioni, L. Genovese, I. Duchemin, Th. Deutsch, Accurate complex scaling of three dimensional numerical potentials. Preprint (2013); arXiv:1303.6439v2Google Scholar
  8. [332]
    R.J. Glauber, The quantum theory of optical coherence. Phys. Rev. 130, 2529–2539 (1963)MathSciNetADSCrossRefGoogle Scholar
  9. [359]
    G. Györgyi, Integration of the dynamical symmetry groups for the 1∕r potential. Acta Phys. Acad. Sci. Hung. 27, 435–439 (1969)CrossRefGoogle Scholar
  10. [426]
    M. Kulesh, M. Holschneider, M.S. Diallo, Geophysical wavelet library: Applications of the continuous wavelet transform to the polarization and dispersion analysis of signals. Comput. Geosci. 34, 1732–1752 (2008)ADSCrossRefGoogle Scholar
  11. [489]
    A. Odzijewicz, M. Horowski, A. Tereszkiewicz, Integrable multi-boson systems and orthogonal polynomials. J. Phys. A: Math. Gen. 34, 4353–4376 (2001)MathSciNetADSCrossRefMATHGoogle Scholar
  12. [574]
    F.H. Szafraniec, The reproducing kernel Hilbert space and its multiplication operators, in Complex Analysis and Related Topics, ed. by E. Ramirez de Arellano et al. Operator Theory: Advances and Applications, vol. 114 (Birkhäuser, Basel, 2000), pp. 254–263Google Scholar
  13. [575]
    F.H. Szafraniec, Multipliers in the reproducing kernel Hilbert space, subnormality and noncommutative complex analysis, in Reproducing Kernel Spaces and Applications, ed. by D. Alpay. Operator Theory: Advances and Applications, vol. 143 (Birkhäuser, Basel, 2003), pp. 313–331Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Syed Twareque Ali
    • 1
  • Jean-Pierre Antoine
    • 2
  • Jean-Pierre Gazeau
    • 3
    • 4
  1. 1.Department of Mathematics and StatisticsConcordia UniversityMontréalCanada
  2. 2.Institut de Recherche en Mathématique et Physique (IRMP)Université Catholique de LouvainLouvain-la-NeuveBelgium
  3. 3.Astroparticules et Cosmologie (APC, UMR 7164)Université Paris DiderotSorbonne Paris Cité ParisFrance
  4. 4.Centro Brasileiro de Pesquisas Fisicas (CBPF)Rio de JaneiroBrasil

Personalised recommendations