Wavelets on Manifolds

  • Syed Twareque Ali
  • Jean-Pierre Antoine
  • Jean-Pierre Gazeau
Part of the Theoretical and Mathematical Physics book series (TMP)


In this chapter, we discuss the construction of wavelets related to other groups than similitude groups. The first, and most important, case is that of wavelets on the two-sphere \({\mathbb{S}}^{2}\). We start with the continuous approach, based on the use of stereographic dilations, i.e., dilations obtained by lifting to \({\mathbb{S}}^{2}\) ordinary dilations on a tangent plane by an inverse stereographic projection. Next we describe briefly a number of techniques for obtaining discrete wavelets on \({\mathbb{S}}^{2}\). Then we extend the analysis to wavelets on other manifolds, such as conic sections, a torus, general surfaces of revolution or graphs.


Spherical Harmonic Tangent Plane Continuous Wavelet Transform Stereographic Projection Tight Frame 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. [Bec06]
    K. Becker, M. Becker, J.H. Schwarz, String Theory and M-Theory: A Modern Introduction (Cambridge University Press, Cambridge, 2006)CrossRefGoogle Scholar
  2. [Bog05]
    I. Bogdanova, Wavelets on non-Euclidean manifolds. Ph.D. thesis, EPFL, 2005Google Scholar
  3. [Fre97]
    W. Freeden, M. Schreiner, T. Gervens, Constructive Approximation on the Sphere, with Applications to Geomathematics (Clarendon Press, Oxford, 1997)Google Scholar
  4. [Gaa73]
    S.A. Gaal, Linear Analysis and Representation Theory (Springer, Berlin, 1973)CrossRefMATHGoogle Scholar
  5. [Hon07]
    G. Honnouvo, Gabor analysis and wavelet transforms on some non-Euclidean 2-dimensional manifolds. Ph.D. thesis, Concordia University, Montreal, PQ, Canada, 2007Google Scholar
  6. [Kna96]
    A.W. Knapp, Lie Groups Beyond an Introduction (Birkhäuser-Verlang, Basel, 1996; 2nd edn. 2002)Google Scholar
  7. [Lie97]
    E.H. Lieb, M. Loss, Analysis (American Mathematical Society, Providence, RI, 1997)Google Scholar
  8. [Lip74]
    R.L. Lipsman, Group Representations. Lecture Notes in Mathematics, vol. 388 (Springer, Berlin, 1974)Google Scholar
  9. [Mal99]
    S.G. Mallat, A Wavelet Tour of Signal Processing, 2nd edn. (Academic, San Diego, 1999)MATHGoogle Scholar
  10. [Ste71]
    E.M. Stein, G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces (Princeton University Press, Princeton, NJ, 1971)MATHGoogle Scholar
  11. [Tor95]
    B. Torrésani, Analyse continue par ondelettes (InterÉditions/CNRS Éditions, Paris, 1995)MATHGoogle Scholar
  12. [60]
    J-P. Antoine, D. Roşca, The wavelet transform on the two-sphere and related manifolds — A review, in Optical and Digital Image Processing. SPIE Proceedings, vol. 7000 (2008), pp. 70000B-1–15Google Scholar
  13. [62]
    J-P. Antoine, P. Vandergheynst, Wavelets on the n-sphere and related manifolds. J. Math. Phys. 39, 3987–4008 (1998)Google Scholar
  14. [63]
    J-P. Antoine, P. Vandergheynst, Wavelets on the 2-sphere: A group-theoretical approach. Appl. Comput. Harmon. Anal. 7, 262–291 (1999)Google Scholar
  15. [64]
    J-P. Antoine, P. Vandergheynst, Wavelets on the two-sphere and other conic sections. J. Fourier Anal. Appl. 13, 369–386 (2007)Google Scholar
  16. [80]
    J-P. Antoine, J-P. Gazeau, P. Monceau, J. R. Klauder, K. Penson, Temporally stable coherent states for infinite well and Pöschl-Teller potentials. J. Math. Phys. 42, 2349–2387 (2001)Google Scholar
  17. [81]
    J-P. Antoine, A. Coron, C. Chauvin, Wavelets and related time-frequency techniques in magnetic resonance spectroscopy. NMR Biomed. 14, 265–270 (2001)Google Scholar
  18. [82]
    J-P. Antoine, L. Demanet, J.-F. Hochedez, L. Jacques, R. Terrier, E. Verwichte, Application of the 2-D wavelet transform to astrophysical images. Phys. Mag. 24, 93–116 (2002)Google Scholar
  19. [86]
  20. [115]
    P. Baldi, G. Kerkyacharian, D. Marinucci, D. Picard, Asymptotics for spherical needlets. Ann. of Stat. 37, 1150–1171 (2009)MathSciNetADSCrossRefMATHGoogle Scholar
  21. [116]
    M.C. Baldiotti, J-P. Gazeau, D.M. Gitman, Coherent states of a particle in magnetic field and Stieltjes moment problem. Phys. Lett. A 373, 1916–1920 (2009); Erratum: Phys. Lett. A 373 2600 (2009)Google Scholar
  22. [154]
    I. Bogdanova, X. Bresson, J-P. Thiran, P. Vandergheynst, Scale space analysis and active contours for omnidirectional images. IEEE Trans. Image Process. 16 1888–1901 (2007)Google Scholar
  23. [155]
    I. Bogdanova, P. Vandergheynst, J-P. Gazeau, Continuous wavelet transform on the hyperboloid. Appl. Comput. Harmon. Anal. 23 (2007), 286–306 (2007)Google Scholar
  24. [156]
    P. Boggiatto, E. Cordero, Anti-Wick quantization of tempered distributions, in Progress in Analysis, Berlin (2001), vol. I, II (World Sci. Publ., River Edge, NJ, 2003), pp. 655–662Google Scholar
  25. [171]
    Č. Burdik, C. Frougny, J,-P. Gazeau, R. Krejcar, Beta-integers as natural counting systems for quasicrystals. J. Phys. A: Math. Gen. 31, 6449–6472 (1998)Google Scholar
  26. [177]
    M. Calixto, E. Pérez-Romero, Extended MacMahon-Schwinger’s master theorem and conformal wavelets in complex Minkowski space. Appl. Comput. Harmon. Anal. 31, 143–168 (2011)MathSciNetCrossRefMATHGoogle Scholar
  27. [179]
    E.J. Candès, Harmonic analysis of neural networks. Appl. Comput. Harmon. Anal. 6, 197–218 (1999)MathSciNetCrossRefMATHGoogle Scholar
  28. [219]
    S. Dahlke, V. Lehmann, G. Teschke, Applications of wavelet methods to the analysis of meteorological radar data - An overview. Arabian J. Sci. Eng. 28, 3–44 (2003)MathSciNetMATHGoogle Scholar
  29. [263]
    H. Drissi, F. Regragui, J-P. Antoine, M. Bennouna, Wavelet transform analysis of visual evoked potentials: Some preliminary results. ITBM-RBM 21, 84–91 (2000)Google Scholar
  30. [268]
    S.J.L. van Eindhoven, J.L.H. Meyers, New orthogonality relations for the Hermite polynomials and related Hilbert spaces. J. Math. Anal. Appl. 146, 89–98 (1990)MathSciNetCrossRefGoogle Scholar
  31. [284]
    W. Freeden, U. Windheuser, Combined spherical harmonic and wavelet expansion — A future concept in Earth’s gravitational determination. Appl. Comput. Harmon. Anal. 4, 1–37 (1997)MathSciNetCrossRefMATHGoogle Scholar
  32. [285]
    W. Freeden, T. Maier, S. Zimmermann, A survey on wavelet methods for (geo)applications, Revista Mathematica Complutense 16 (2003) 277–310MathSciNetMATHGoogle Scholar
  33. [286]
    W. Freeden, M. Schreiner, Biorthogonal locally supported wavelets on the sphere based on zonal kernel functions. J. Fourier Anal. Appl. 13, 693–709 (2007)MathSciNetCrossRefMATHGoogle Scholar
  34. [287]
    W.T. Freeman, E.H. Adelson, The design and use of steerable filters. IEEE Trans. Pattern Anal. Machine Intell. 13, 891–906 (1991)CrossRefGoogle Scholar
  35. [324]
    D. Geller, A. Mayeli, Nearly tight frames and space-frequency analysis on compact manifolds. Math. Z. 263, 235–264 (2009)MathSciNetCrossRefMATHGoogle Scholar
  36. [325]
    L. Genovese, B. Videau, M. Ospici, Th. Deutsch, S. Goedecker, J-F. Mhaut, Daubechies wavelets for high performance electronic structure calculations: The BigDFT project. C. R. Mecanique, 339, 149–164 (2011)Google Scholar
  37. [329]
    R. Gilmore, Geometry of symmetrized states. Ann. Phys. (NY) 74, 391–463 (1972)MathSciNetADSCrossRefGoogle Scholar
  38. [340]
    P. Goupillaud, A. Grossmann, J. Morlet, Cycle-octave and related transforms in seismic signal analysis. Geoexploration 23, 85–102 (1984)CrossRefGoogle Scholar
  39. [363]
    Y. Hassouni, E.M.F. Curado, M.A. Rego-Monteiro, Construction of coherent states for physical algebraic system. Phys. Rev. A 71, 022104 (2005)MathSciNetADSCrossRefGoogle Scholar
  40. [376]
    M. Holschneider, Inverse Radon transforms through inverse wavelet transforms. Inv. Probl. 7, 853–861 (1991)MathSciNetADSCrossRefMATHGoogle Scholar
  41. [381]
    M. Holschneider, I. Iglewska-Nowak, Poisson wavelets on the sphere. J. Fourier Anal. Appl. 13, 405–419 (2007)MathSciNetCrossRefMATHGoogle Scholar
  42. [382]
    M. Holschneider, R. Kronland-Martinet, J. Morlet, P. Tchamitchian, A real-time algorithm for signal analysis with the help of wavelet transform, in Wavelets, Time-Frequency Methods and Phase Space (Proc. Marseille 1987), ed. by J.-M. Combes, A. Grossmann, P. Tchamitchian, 2nd edn. (Springer, Berlin, 1990), pp. 286–297Google Scholar
  43. [390]
    E. Inönü, E.P. Wigner, On the contraction of groups and their representations. Proc. Nat. Acad. Sci. U. S. 39, 510–524 (1953)MathSciNetADSCrossRefMATHGoogle Scholar
  44. [435]
    J-P. Leduc, F. Mujica, R. Murenzi, M.J.T. Smith, Missile-tracking algorithm using target-adapted spatio-temporal wavelets, in Automatic Object Recognition VII. SPIE Proceedings, vol. 5914 (SPIE, Bellingham, WA, 1997), pp. 400–411Google Scholar
  45. [439]
    P.G. Lemarié, Y. Meyer, Ondelettes et bases hilbertiennes. Rev. Math. Iberoamer. 2, 1–18 (1986)CrossRefGoogle Scholar
  46. [457]
    S. Mallat, W.-L. Hwang, Singularity detection and processing with wavelets. IEEE Trans. Inform. Theory 38, 617–643 (1992)MathSciNetCrossRefMATHGoogle Scholar
  47. [462]
    D. Marion, M. Ikura, A. Bax, Improved solvent suppression in one- and two-dimensional NMR spectra by convolution of time-domain data, J. Magn. Reson. 84, 425–430 (1989)ADSGoogle Scholar
  48. [477]
    B. Nagel, Generalized eigenvectors in group representations, in Studies in Mathematical Physics (Proc. Istanbul 1970), ed. by A.O. Barut (Reidel, Dordrecht and Boston, 1970), pp. 135–154Google Scholar
  49. [480]
    M. Nauenberg, Quantum wave packets on Kepler elliptic orbits. Phys. Rev. A 40, 1133–1136 (1989)MathSciNetADSCrossRefGoogle Scholar
  50. [506]
    W.W.F. Pijnappel, A. van den Boogaart, R. de Beer, D. van Ormondt, SVD-based quantification of magnetic resonance signals, J. Magn. Reson. 97, 122–134 (1992)ADSGoogle Scholar
  51. [510]
    E. Prugovec̆ki, Consistent formulation of relativistic dynamics for massive spin-zero particles in external fields. Phys. Rev. D 18, 3655–3673 (1978) (Appendix C)Google Scholar
  52. [525]
    D. Roşca, Haar wavelets on spherical triangulations, in Advances in Multiresolution for Geometric Modelling, ed. by N.A. Dogson, M.S. Floater, M.A. Sabin (Springer, Berlin, 2005), pp. 407–419Google Scholar
  53. [526]
    D. Roşca, Locally supported rational spline wavelets on the sphere. Math. Comput. 74, 1803–1829 (2005)ADSCrossRefMATHGoogle Scholar
  54. [527]
    D. Roşca, Wavelets defined on closed surfaces, J. Comput. Anal. Appl. 8, 121–132 (2006)MathSciNetMATHGoogle Scholar
  55. [528]
    D. Roşca, Weighted Haar wavelets on the sphere. Int. J. Wavelets Multiresol. Inf. Proc. 5, 501–511 (2007)CrossRefMATHGoogle Scholar
  56. [529]
    D. Roşca, Wavelet bases on the sphere obtained by radial projection. J. Fourier Anal. Appl. 13, 421–434 (2007)MathSciNetCrossRefMATHGoogle Scholar
  57. [531]
    D. Roşca, On a norm equivalence on \({L}^{2}({S}^{2})\). Results Math. 53, 399–405 (2009)MathSciNetCrossRefMATHGoogle Scholar
  58. [532]
    D. Roşca, New uniform grids on the sphere. Astron. Astrophys. 520 (2010). Art. A63Google Scholar
  59. [533]
    D. Roşca, Uniform and refinable grids on elliptic domains and on some surfaces of revolution. Appl. Math. Comput. 217, 7812–7817 (2011)MathSciNetCrossRefMATHGoogle Scholar
  60. [534]
    D. Roşca, Wavelet analysis on some surfaces of revolution via area preserving projection. Appl. Comput. Harmon. Anal. 30, 262–272 (2011)MathSciNetCrossRefMATHGoogle Scholar
  61. [535]
    D. Roşca, J-P. Antoine, Locally supported orthogonal wavelet bases on the sphere via stereographic projection. Math. Probl. Eng. 2009, 124904 (2009)Google Scholar
  62. [536]
    D. Roşca, J-P. Antoine, Constructing wavelet frames and orthogonal wavelet bases on the sphere, in Recent Advances in Signal Processing, ed. by S. Miron (IN-TECH, Vienna, Austria, and Rijeka, Croatia, 2010), pp. 59–76Google Scholar
  63. [537]
    D. Roşca, G. Plonka, Uniform spherical grids via area preserving projection from the cube to the sphere. J. Comput. Appl. Math. 236, 1033–1041 (2011)MathSciNetCrossRefMATHGoogle Scholar
  64. [538]
    D. Roşca, G. Plonka, An area preserving projection from the regular octahedron to the sphere. Results Math. 63, 429–444 (2012)Google Scholar
  65. [551]
    P. Schröder, W. Sweldens, Spherical wavelets: Efficiently representing functions on the sphere, in Computer Graphics Proceedings (SIGGRAPH95) (ACM Siggraph, Los Angeles, 1995), pp. 161–175Google Scholar
  66. [553]
    S. Scodeller, Ø. Rudjord, F.K. Hansen, D. Marinucci, D. Geller, A. Mayeli, Introducing Mexican needlets for CMB analysis: Issues for practical applications and comparison with standard needlets. Astrophys. J. 733 (2011). Art. 121Google Scholar
  67. [566]
    J.-L. Starck, E.J. Candès, D.L. Donoho, The curvelet transform for image denoising. IEEE Trans. Image Proc. 11, 670–684 (2002)ADSCrossRefGoogle Scholar
  68. [568]
    J.-L. Starck, Y. Moudden, P. Abrial, M. Nguyen, Wavelets, ridgelets and curvelets on the sphere. Astron. Astroph. 446, 1191–1204 (2006)ADSCrossRefGoogle Scholar
  69. [576]
    R. Takahashi, Sur les représentations unitaires des groupes de Lorentz généralisés. Bull. Soc. Math. France 91, 289–433 (1963)MathSciNetMATHGoogle Scholar
  70. [585]
    Tokamak: see Wikipedia.
  71. [588]
    B. Torrésani, Position-frequency analysis for signals defined on spheres. Signal Proc. 43, 341–346 (2005)CrossRefGoogle Scholar
  72. [601]
    I. Weinreich, A construction of C 1-wavelets on the two-dimensional sphere. Appl. Comput. Harmon. Anal. 10, 1–26 (2001)MathSciNetCrossRefMATHGoogle Scholar
  73. [603]
    Y. Wiaux, L. Jacques, P. Vandergheynst, Correspondence principle between spherical and Euclidean wavelets. Astrophys. J. 632, 15–28 (2005)ADSCrossRefGoogle Scholar
  74. [605]
    Y. Wiaux, J.D. McEwen, P. Vandergheynst, O. Blanc, Exact reconstruction with directional wavelets on the sphere. Mon. Not. R. Astron. Soc. 388, 770–788 (2008)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Syed Twareque Ali
    • 1
  • Jean-Pierre Antoine
    • 2
  • Jean-Pierre Gazeau
    • 3
    • 4
  1. 1.Department of Mathematics and StatisticsConcordia UniversityMontréalCanada
  2. 2.Institut de Recherche en Mathématique et Physique (IRMP)Université Catholique de LouvainLouvain-la-NeuveBelgium
  3. 3.Astroparticules et Cosmologie (APC, UMR 7164)Université Paris DiderotSorbonne Paris Cité ParisFrance
  4. 4.Centro Brasileiro de Pesquisas Fisicas (CBPF)Rio de JaneiroBrasil

Personalised recommendations