Skip to main content

Abstract

This is the first of four chapters devoted to a very successful type of CS, namely, wavelets. In the present one, we treat the simplest case, the continuous wavelet transform (CWT) in 1-D. Starting from the beginning, we rewrite the general CS formalism for the case at hand, that is, the connected affine group of the line. We discuss the basic properties, the interpretation of the CWT as a phase space representation and some examples, with emphasis on a recent application to NMR spectroscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Sometimes called the Gabor transform, although Gabor considered only a discretized version of it [294].

  2. 2.

    The set {α m } is directed if, for any pair α m , α n , there is an element α p such that α m α p and α m α p .

  3. 3.

    By this, we mean that the function is numerically negligible outside that region.

  4. 4.

    We return here to the (t, ω) notations, more familiar in signal processing.

References

  1. P. Abry, Ondelettes et turbulences — Multirésolutions, algorithmes de décomposition, invariance d’échelle et signaux de pression (Diderot, Paris, 1997)

    MATH  Google Scholar 

  2. A. Alaux, L’image par résonance magnétique (Sauramps Médical, Montpellier, 1994)

    Google Scholar 

  3. A. Aldroubi, M. Unser (eds.), Wavelets in Medicine and Biology (CRC Press, Boca Raton, 1996)

    MATH  Google Scholar 

  4. A. Arnéodo, F. Argoul, E. Bacry, J. Elezgaray, J.F. Muzy, Ondelettes, multifractales et turbulences – De l’ADN aux croissances cristallines (Diderot, Paris, 1995)

    Google Scholar 

  5. A.O. Barut, R. Ra̧czka, Theory of Group Representations and Applications (PWN, Warszawa, 1977)

    Google Scholar 

  6. J.C. van den Berg (ed.), Wavelets in Physics (Cambridge University Press, Cambridge, 1999)

    Google Scholar 

  7. C.K. Chui, An Introduction to Wavelets (Academic, San Diego, 1992)

    MATH  Google Scholar 

  8. J.-M. Combes, A. Grossmann, P. Tchamitchian (eds.), Wavelets, Time-Frequency Methods and Phase Space (Proc. Marseille 1987), 2nd edn. (Springer, Berlin, 1990)

    Google Scholar 

  9. L.F. Costa, R.M. Cesar Jr., Coherent States and Applications in Mathematical Physics (CRC Press, Boca Raton, FL, 2001)

    Google Scholar 

  10. I. Daubechies, Ten Lectures on Wavelets (SIAM, Philadelphia, 1992)

    Book  MATH  Google Scholar 

  11. P. Flandrin, Temps-Fréquence (Hermès, Paris, 1993); Engliah translation Time-Frequency/Time-Scale Analysis (Academic, New York, 1998)

    Google Scholar 

  12. I.M. Gelfand, N.Y. Vilenkin, Generalized Functions, vol. 4 (Academic, New York, 1964)

    Google Scholar 

  13. H. Günther, NMR Spectroscopy, 2nd edn. (Wiley, Chichester, New York, 1994)

    Google Scholar 

  14. V. Guillemin, S. Sternberg, Symplectic Techniques in Physics (Cambridge University Press, Cambridge, 1984)

    MATH  Google Scholar 

  15. C. Heil, D. Walnut (eds.), Fundamental Papers in Wavelet Theory (Princeton University Press, Princeton, NJ, 2006)

    Google Scholar 

  16. M. Holschneider, Wavelets, An Analysis Tool (Oxford University Press, Oxford, 1995)

    MATH  Google Scholar 

  17. S. Jaffard, Y. Meyer, Wavelet Methods for Pointwise Regularity and Local Oscillations of Functions. Memoirs of the American Mathematical Society, vol. 143 (American Mathematical Society, Providence, RI, 1996)

    Google Scholar 

  18. A.A. Kirillov, Elements of the Theory of Representations (Springer, Berlin, 1976)

    Book  MATH  Google Scholar 

  19. P.A. Lynn, An Introduction to the Analysis and Processing of Signals, 2nd edn. (MacMillan, London, 1982)

    Google Scholar 

  20. S. Maes, The wavelet transform in signal processing, with application to the extraction of the speech modulation model features. Thèse de Doctorat, Univ. Cath. Louvain, Louvain-la-Neuve, 1994

    Google Scholar 

  21. Y. Meyer (ed.), Wavelets and Applications (Proc. Marseille 1989) (Masson and Springer, Paris and Berlin, 1991)

    Google Scholar 

  22. Y. Meyer, S. Roques (eds.), Progress in Wavelet Analysis and Applications (Proc. Toulouse 1992) (Ed. Frontières, Gif-sur-Yvette 1993)

    Google Scholar 

  23. A. Papoulis, S.U. Pillai, Probability, Random Variables and Stochastic Processes, 4th edn. (McGraw Hill, New York, 2002)

    Google Scholar 

  24. T. Paul, Ondelettes et Mécanique Quantique. Thèse de doctorat, Univ. d’Aix-Marseille II, 1985

    Google Scholar 

  25. A. Suvichakorn, C. Lemke, A. Schuck Jr., J-P. Antoine, The continuous wavelet transform in MRS, Tutorial text Marie Curie Research Training Network FAST (2011). http://www.fast-mariecurie-rtn-project.eu/#Wavelet

  26. G. Thonet, New aspects of time-frequency analysis for biomedical signal processing. Thèse de Doctorat, EPFL, Lausanne, 1998

    Google Scholar 

  27. B. Torrésani, Analyse continue par ondelettes (InterÉditions/CNRS Éditions, Paris, 1995)

    MATH  Google Scholar 

  28. P. Wojtaszczyk, A Mathematical Introduction to Wavelets (Cambridge University Press, Cambridge, 1997)

    Book  MATH  Google Scholar 

  29. P. Abry, R. Baraniuk, P. Flandrin, R. Riedi, D. Veitch, Multiscale nature of network traffic. IEEE Signal Process. Mag. 19, 28–46 (2002)

    Article  ADS  Google Scholar 

  30. M. Alexandrescu, D. Gibert, G. Hulot, J.-L. Le Mouel, G. Saracco, Worldwide wavelet analysis of geomagnetic jerks. J. Geophys. Res. B 101, 21975–21994 (1996)

    Article  ADS  Google Scholar 

  31. J-P. Antoine, Introduction to precursors in physics: Affine coherent states, in Fundamental Papers in Wavelet Theory, ed. by C. Heil, D. Walnut (Princeton University Press, Princeton, NJ, 2006), pp. 113–116

    Google Scholar 

  32. J-P. Antoine, A. Coron, Time-frequency and time-scale approach to magnetic resonance spectroscopy. J. Comput. Methods Sci. Eng. (JCMSE) 1, 327–352 (2001)

    Google Scholar 

  33. J-P. Antoine, U. Moschella, Poincaré coherent states: The two-dimensional massless case. J. Phys. A: Math. Gen. 26, 591–607 (1993)

    Google Scholar 

  34. J-P. Antoine, R. Murenzi, Two-dimensional directional wavelets and the scale-angle representation. Signal Process. 52, 259–281 (1996)

    Google Scholar 

  35. J-P. Antoine, R. Murenzi, P. Vandergheynst, Two-dimensional directional wavelets in image processing. Int. J. Imaging Syst. Tech. 7, 152–165 (1996)

    Google Scholar 

  36. P. Antoine, B. Piraux, D.B. Milošević, M. Gajda, Generation of ultrashort pulses of harmonics. Phys. Rev. A 54, R1761–R1764 (1996)

    Article  ADS  Google Scholar 

  37. P. Antoine, B. Piraux, D.B. Milošević, M. Gajda, Temporal profile and time control of harmonic generation. Laser Phys. 7, 594–601 (1997)

    Google Scholar 

  38. J-P. Antoine, L. Jacques, R. Twarock, Wavelet analysis of a quasiperiodic tiling with fivefold symmetry. Phys. Lett. A 261, 265–274 (1999)

    Google Scholar 

  39. J-P. Antoine, Y.B. Kouagou, D. Lambert, B. Torrésani, An algebraic approach to discrete dilations. Application to discrete wavelet transforms. J. Fourier Anal. Appl. 6, 113–141 (2000)

    Google Scholar 

  40. J-P. Antoine, L. Demanet, L. Jacques, P. Vandergheynst, Wavelets on the sphere: Implementation and approximations. Appl. Comput. Harmon. Anal. 13, 177–200 (2002)

    Google Scholar 

  41. J-P. Antoine, I. Bogdanova, P. Vandergheynst, The continuous wavelet transform on conic sections. Int. J. Wavelets Multires. Inform. Proc. 6, 137–156 (2007)

    Google Scholar 

  42. J-P. Antoine, D. Roşca, P. Vandergheynst, Wavelet transform on manifolds: Old and new approaches. Appl. Comput. Harmon. Anal. 28, 189–202 (2010)

    Google Scholar 

  43. F. Argoul, A. Arnéodo, G. Grasseau, Y. Gagne, E.J. Hopfinger, Wavelet analysis of turbulence reveals the multifractal nature of the Richardson cascade. Nature 338, 51–53 (1989)

    Article  ADS  Google Scholar 

  44. A. Arnéodo, F. Argoul, E. Bacry, J. Elezgaray, E. Freysz, G. Grasseau, J.F. Muzy, B. Pouligny, Wavelet transform of fractals, in Wavelets and Applications (Proc. Marseille 1989) ed. by Y. Meyer (Masson and Springer, Paris and Berlin, 1991), pp. 286–352

    Google Scholar 

  45. A. Arnéodo, E. Bacry, J.F. Muzy, Oscillating singularities in locally self-similar functions. Phys. Rev. Lett. 74, 4823–4826 (1995)

    Article  ADS  Google Scholar 

  46. A. Arnéodo, E. Bacry, P.V. Graves, J.F. Muzy, Characterizing long-range correlations in DNA sequences from wavelet analysis. Phys. Rev. Lett. 74, 3293–3296 (1996)

    Article  ADS  Google Scholar 

  47. A. Arnéodo, Y. d’Aubenton, E. Bacry, P.V. Graves, J.F. Muzy, C. Thermes, Wavelet based fractal analysis of DNA sequences. Physica D 96, 291–320 (1996)

    Google Scholar 

  48. A. Arnéodo, E. Bacry, S. Jaffard, J.F. Muzy, Oscillating singularities on Cantor sets. A grand canonical multifractal formalism. J. Stat. Phys. 87, 179–209 (1997)

    Article  MATH  Google Scholar 

  49. A. Arnéodo, E. Bacry, S. Jaffard, J.F. Muzy, Singularity spectrum of multifractal functions involving oscillating singularities. J. Fourier Anal. Appl. 4, 159–174 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  50. E.W. Aslaksen, J.R. Klauder, Unitary representations of the affine group. J. Math. Phys. 9, 206–211 (1968)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  51. E.W. Aslaksen, J.R. Klauder, Continuous representation theory using the affine group. J. Math. Phys. 10, 2267–2275 (1969)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  52. V. Bargmann, On a Hilbert space of analytic functions and an associated integral transform. Part I. Commun. Pure Appl. Math. 14, 187–214 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  53. J.J. Benedetto, A. Teolis, A wavelet auditory model and data compression. Appl. Comput. Harmon. Anal. 1, 3–28 (1993)

    Article  MATH  Google Scholar 

  54. F.A. Berezin, Quantization. Math. USSR Izvestija 8, 1109–1165 (1974)

    Article  Google Scholar 

  55. S. Bergman, Über die Kernfunktion eines Bereiches und ihr Verhalten am Rande I. Reine Angw. Math. 169, 1–42 (1933)

    Google Scholar 

  56. V.V. Borzov, Orthogonal polynomials and generalized oscillator algebras. Int. Transform. Spec. Funct. 12, 115–138 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  57. C.M. Brislawn, Fingerprints go digital. Notices Amer. Math. Soc. 42, 1278–1283 (1995)

    Google Scholar 

  58. A. Cohen, I. Daubechies, J.-C. Feauveau, Biorthogonal bases of compactly supported wavelets. Commun. Pure Appl. Math. 45, 485–560 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  59. N. Cotfas, J-P. Gazeau, Finite tight frames and some applications (topical review). J. Phys. A: Math. Theor. 43, 193001 (2010)

    Google Scholar 

  60. S. Dahlke, G. Kutyniok, P. Maass, C. Sagiv, H.-G. Stark, G. Teschke, The uncertainty principle associated with the continuous shearlet transform. Int. J. Wavelets Multiresolut. Inf. Process. 6, 157–181 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  61. I. Daubechies, The wavelet transform, time-frequency localisation and signal analysis. IEEE Trans. Inform. Theory 36, 961–1005 (1990)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  62. I. Daubechies, S. Maes, A nonlinear squeezing of the continuous wavelet transform based on auditory nerve models, in Wavelets in Medicine and Biology, ed. by A. Aldroubi, M. Unser (CRC Press, Boca Raton, 1996), pp. 527–546

    Google Scholar 

  63. I. Daubechies, A. Grossmann, Y. Meyer, Painless nonorthogonal expansions. J. Math. Phys. 27, 1271–1283 (1986)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  64. E.R. Davies, Introduction to texture analysis, in Handbook of texture analysis, ed. by M. Mirmehdi, X. Xie, J. Suri (World Scientific, Singapore, 2008), pp. 1–31

    Chapter  Google Scholar 

  65. S. De Bièvre, Coherent states over symplectic homogeneous spaces. J. Math. Phys. 30, 1401–1407 (1989)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  66. Th. Deutsch, L. Genovese, Wavelets for electronic structure calculations. Collection Soc. Fr. Neut., 12, 33–76 (2011)

    Article  Google Scholar 

  67. A.N. Dinkelaker, A.L. MacKinnon, Wavelets, intermittency and solar flare hard X-rays 2: LIM analysis of high time resolution BATSE data. Solar Phys. 282, 483–501 (2013)

    Article  ADS  Google Scholar 

  68. M.N. Do, M. Vetterli, Contourlets, in Beyond Wavelets, ed. by G.V. Welland (Academic, San Diego, 2003), pp. 83–105

    Chapter  Google Scholar 

  69. R.J. Duffin, A.C. Schaeffer, A class of nonharmonic Fourier series. Trans. Amer. Math. Soc. 72, 341–366 (1952)

    Article  MathSciNet  MATH  Google Scholar 

  70. M. Fanuel, S. Zonetti, Affine quantization and the initial cosmological singularity. Europhys. Lett. 101, 10001 (2013)

    Article  ADS  Google Scholar 

  71. M. Farge, Wavelet transforms and their applications to turbulence. Annu. Rev. Fluid Mech. 24, 395–457 (1992)

    Article  MathSciNet  ADS  Google Scholar 

  72. M. Farge, N. Kevlahan, V. Perrier, E. Goirand, Wavelets and turbulence. Proc. IEEE 84, 639–669 (1996)

    Google Scholar 

  73. H.G. Feichtinger, Coherent frames and irregular sampling, in Recent Advances in Fourier Analysis and Its applications, ed. by J.S. Byrnes, J.L. Byrnes (Kluwer, Dordrecht, 1990), pp. 427–440

    Chapter  Google Scholar 

  74. J-P. Gabardo, D. Han, Frames associated with measurable spaces. Adv. Comput. Math. 18, 127–147 (2003)

    Google Scholar 

  75. K.M. Gòrski, E. Hivon, A.J. Banday, B.D. Wandelt, F.K. Hansen, M. Reinecke, M. Bartelmann, HEALPix: A framework for high-resolution discretization and fast analysis of data distributed on the sphere. Astrophys. J. 622, 759–771 (2005)

    Article  ADS  Google Scholar 

  76. K.H. Gröchenig, A new approach to irregular sampling of band-limited functions, in Recent Advances in Fourier Analysis and Its applications, ed. by J.S. Byrnes, J.L. Byrnes (Kluwer, Dordrecht, 1990), pp. 251–260

    Chapter  Google Scholar 

  77. A. Grossmann, J. Morlet, Decomposition of functions into wavelets of constant shape, and related transforms, in Mathematics + Physics, Lectures on recent results. I, ed. by L. Streit (World Scientific, Singapore, 1985), pp. 135–166

    Chapter  Google Scholar 

  78. A. Grossmann, J. Morlet, T. Paul, Integral transforms associated to square integrable representations I: General results. J. Math. Phys. 26, 2473–2479 (1985)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  79. A. Grossmann, J. Morlet, T. Paul, Integral transforms associated to square integrable representations II: Examples. Ann. Inst. H. Poincaré 45, 293–309 (1986)

    MathSciNet  MATH  Google Scholar 

  80. P. Guillemain, R. Kronland-Martinet, B. Martens, Estimation of spectral lines with help of the wavelet transform. Application in NMR spectroscopy, in Wavelets and Applications (Proc. Marseille 1989) ed. by Y. Meyer (Masson and Springer, Paris and Berlin, 1991), pp. 38–60

    Google Scholar 

  81. H. de Guise, M. Bertola, Coherent state realizations of \(\mathfrak{s}\mathfrak{u}(n + 1)\) on the n-torus. J. Math. Phys. 43, 3425–3444 (2002)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  82. M. Holschneider, General inversion formulas for wavelet transforms. J. Math. Phys. 34, 4190–4198 (1993)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  83. G.R. Honarasa, M.K. Tavassoly, M. Hatami, R. Roknizadeh, Nonclassical properties of coherent states and excited coherent states for continuous spectra. J. Phys. A: Math. Theor. 44, 085303 (2011)

    Article  MathSciNet  ADS  Google Scholar 

  84. J.R. Klauder, R.F. Streater, A wavelet transform for the Poincaré group. J. Math. Phys. 32, 1609–1611 (1991)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  85. R. Kunze, On the Frobenius reciprocity theorem for square integrable representations. Pacific J. Math. 53, 465–471 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  86. Y. Kuroda, A. Wada, T. Yamazaki, K. Nagayama, Postacquisition data processing method for suppression of the solvent signal II: The weighted first derivative. J. Magn. Reson. 88, 141–145 (1990)

    ADS  Google Scholar 

  87. G. Kutyniok, D. Labate, Resolution of the wavefront set using continuous shearlets. Trans. Amer. Math. Soc. 361, 2719–2754 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  88. C. Lemke, A. Schuck Jr., J-P. Antoine, D. Sima, Metabolite-sensitive analysis of magnetic resonance spectroscopic signals using the continuous wavelet transform. Meas. Sci. Technol. 22 (2011). Art. # 114013

    Google Scholar 

  89. J-M. Lévy-Leblond, Galilei group and non-relativistic quantum mechanics. J. Math. Phys. 4, 776-788 (1963)

    Google Scholar 

  90. S. Mallat, W.-L. Hwang, Singularity detection and processing with wavelets. IEEE Trans. Inform. Theory 38, 617–643 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  91. Y. Meyer, Principe d’incertitude, bases hilbertiennes et algèbres d’opérateurs. Séminaire Bourbaki 662 (1985–1986)

    Google Scholar 

  92. Y. Meyer, Principe d’incertitude, bases hilbertiennes et algèbres d’opérateurs. Astérisque 145–146, 209–223 (1987)

    ADS  Google Scholar 

  93. Y. Meyer, H. Xu, Wavelet analysis and chirps. Appl. Comput. Harmon. Anal. 4, 366–379 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  94. L. Michel, Invariance in quantum mechanics and group extensions, in Group Theoretical Concepts and Methods in Elementary Particle Physics, ed. by F. Gürsey (Gordon and Breach, New York and London, 1964), pp. 135–200

    Google Scholar 

  95. A.M. Perelomov, On the completeness of a system of coherent states. Theor. Math. Phys. 6, 156–164 (1971)

    Article  MathSciNet  Google Scholar 

  96. V. Pop, D. Roşca, Generalized piecewise constant orthogonal wavelet bases on 2D-domains. Appl. Anal. 90, 715–723 (2011)

    Article  MATH  Google Scholar 

  97. A. Suvichakorn, H. Ratiney, A. Bucur, S. Cavassila, J-P. Antoine, Toward a quantitative analysis of in vivo magnetic resonance proton spectroscopic signals using the continuous Morlet wavelet transform. Meas. Sci. Technol. 20 (2009). Art. #104029

    Google Scholar 

  98. P. Vandergheynst, J-P. Antoine, E. Van Vyve, A. Goldberg, I. Doghri, Modelling and simulation of an impact test using wavelets, analytical and finite element models. Int. J. Solids Struct. 38, 5481–5508 (2001)

    Google Scholar 

  99. L. Vanhamme, R.D. Fierro, S. Van Huffel, R. de Beer, Fast removal of residual water in proton spectra. J. Magn. Reson. 132, 197–203 (1998)

    Article  ADS  Google Scholar 

  100. J. Ville, Théorie et applications de la notion de signal analytique. Câbles et Trans. 2, 61–74 (1948)

    Google Scholar 

  101. P.S.P. Wang, J. Yang, A review of wavelet-based edge detection methods. Int. J. Patt. Recogn. Artif. Intell. 26, 1255011 (2012)

    Article  Google Scholar 

  102. E.P. Wigner, On the quantum correction for thermodynamic equilibrium. Phys. Rev. 40, 749–759 (1932)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ali, S.T., Antoine, JP., Gazeau, JP. (2014). Wavelets. In: Coherent States, Wavelets, and Their Generalizations. Theoretical and Mathematical Physics. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8535-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-8535-3_12

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-8534-6

  • Online ISBN: 978-1-4614-8535-3

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics