Lyapunov-type Inequalities pp 1-10 | Cite as

# Introduction

Chapter

First Online:

- 958 Downloads

## Abstract

In this chapter, we present four theorems that will be proved and generalized in the body of the book. Each one gives a lower bound for the first eigenvalue of a weighted second-order ordinary differential equation, and they involve different integrals of the weight. The main aim of the book is to prove these theorems and show the interplay among them. We also present several extensions to nonlinear equations, systems, and more general operators, which are briefly described here.

## Keywords

Solomyak Quasilinear Setting Generalized Fourier Expansion Inhomogeneous String Monotonic Weight
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

## References

- 3.Antman, S. S.: The influence of elasticity on analysis: modern developments. Bull. Amer. Math. Soc.
**9**, 267–291 (1983)MathSciNetCrossRefzbMATHGoogle Scholar - 4.Bargmann, V.: On the number of bound states in a central field of force. Proc. Nat. Acad. Sci. USA
**38**, 961–966 (1952)MathSciNetCrossRefzbMATHGoogle Scholar - 6.Birman, M., Solomyak, M.: On the negative discrete spectrum of a periodic elliptic operator in a waveguide-type domain, perturbed by a decaying potential. Journal d’Analyse Mathématique
**83**, 337–391 (2001)MathSciNetCrossRefzbMATHGoogle Scholar - 8.Boccardo, L., de Figueiredo, D.G.: Some remarks on a system of quasilinear elliptic equations. NoDEA Nonlinear Differential Equations Appl.
**9**, 309–323 (2002)MathSciNetCrossRefzbMATHGoogle Scholar - 9.Borg, G.: Uber die Stabilität gewisser Klassen von linearen Differentialgleichungen, Ark. for Matematik, Astronomi och Fysik
**31**, 1–31 (1945)Google Scholar - 14.Brown, R. C., Hinton, D. B.: Lyapunov inequalities and their applications. In: Rassias, T. M. (ed.) Survey on Classical Inequalities, pp. 1–25. Springer (2000)Google Scholar
- 17.Calogero, F.: Necessary Conditions for the Existence of Bound States. Nuovo Cimento
**36**, 199–201 (1965)MathSciNetCrossRefGoogle Scholar - 19.Cañada, A., Villegas, S.: Lyapunov inequalities for Neumann boundary conditions at higher eigenvalues. J. European Math. Soc.
**12**, 163–178 (2010)CrossRefzbMATHGoogle Scholar - 22.Cañada, A., Montero, J.A., Villegas, S.: Lyapunov inequalities for partial differential equations. J. Functional Analysis
**237**, 17–193 (2006)CrossRefGoogle Scholar - 23.Castro, M. J., Pinasco, J.P.: An Inequality for Eigenvalues of Quasilinear Problems with Monotonic Weights. Applied Mathematical Letters
**23**, 1355–1360 (2010)MathSciNetCrossRefzbMATHGoogle Scholar - 24.Cheng, S. S.: A discrete analogue of the inequality of Lyapunov. Hokkaido Math. J.
**12**, 105–112 (1983)MathSciNetCrossRefzbMATHGoogle Scholar - 25.Cheng, S. S.: Lyapunov inequalities for differential and difference equations. Fasc. Math.
**23**, 25–41 (1991)zbMATHGoogle Scholar - 28.Cohn, J. H. E.: On the Number of Negative Eigen-Values of a Singular Boundary value Problem. J. London Math. Soc.
**40**, 523–525 (1965)MathSciNetCrossRefzbMATHGoogle Scholar - 29.Cohn, J. H. E.: On the Number of Negative Eigen-Values of a Singular Boundary Value Problem (II). Journal of the London Mathematical Society,
**41**, 469–473 (1966)CrossRefzbMATHGoogle Scholar - 31.Courant, R., Hilbert, D,: Methods of Mathematical Physics, vol. I, Interscience Publishers, Inc., New York (1953)Google Scholar
- 33.Das, K. M., Vatsala, A. S.: Green’s function for
*n*-*n*boundary value problem and an analogue of Hartman’s result. Journal of Mathematical Analysis and Applications**51**, 670–677 (1975)MathSciNetCrossRefzbMATHGoogle Scholar - 35.De Nápoli, P. L., Pinasco, J. P.: A Lyapunov Inequality for Monotone Quasilinear Operators. Differential Integral Equations
**18**, 1193–1200 (2005)MathSciNetzbMATHGoogle Scholar - 36.De Nápoli, P. L., Pinasco, J. P.: Estimates for Eigenvalues of Quasilinear Elliptic Systems, Part I. Journal of Differential Equations
**227**, 102–115 (2006)CrossRefzbMATHGoogle Scholar - 37.De Nápoli, P. L., Pinasco, J. P.: Lyapunov-type inequalities in
*R*^{N}. Preprint (2012)Google Scholar - 39.Dosly, O., Rehak, P.: Half-Linear Differential Equations. Volume 202 North-Holland Mathematics Studies. North Holland (2005)CrossRefzbMATHGoogle Scholar
- 40.Drabek, P., Kufner, A.: Discreteness and simplicity of the spectrum of a quasilinear Sturm–Liouville-type problem on an infinite interval. Proceedings of the American Mathematical Society
**134**, 235–242 (2006)MathSciNetCrossRefzbMATHGoogle Scholar - 42.Egorov, Y. V., Kondriatev, V. A.: On Spectral Theory of Elliptic Operators (Operator Theory: Advances and Applications) Birkhäuser (1996)CrossRefzbMATHGoogle Scholar
- 43.Elbert, A.: A half-linear second order differential equation. Colloq. Math. Soc. Janos Bolyai
**30**, 158–180 (1979)Google Scholar - 44.Elias, U.: Singular eigenvalue problems for the equation \({y}^{n} +\lambda p(x)y = 0\), Monatsh. Math.
**142**, 205–225 (2004)MathSciNetCrossRefzbMATHGoogle Scholar - 45.Eliason, S. B.: Liapunov type inequalities for certain second order functional differential equations. SIAM J. Applied Math.
**27**, 180–199 (1974)MathSciNetCrossRefzbMATHGoogle Scholar - 46.Eliason, S. B.: Distance between zeros of certain differential equations having delayed arguments. Annali di Matematica Pura ed Applicata
**106**, 273–291 (1975)MathSciNetCrossRefzbMATHGoogle Scholar - 53.García Azorero, J., Peral Alonso, I.: Existence and Nonuniqueness for the
*p*-Laplacian: Nonlinear Eigenvalues. Communications in Partial Differential Equations**12**, 1389–1430 (1987)MathSciNetCrossRefzbMATHGoogle Scholar - 55.García-Huidobro, M., Le, V. K., Manásevich, R., Schmitt, K.: On principal eigenvalues for quasilinear elliptic differential operators: an Orlicz–Sobolev space setting. Nonlinear Differential Equations Appl.
**6**, 207–225 (1999)CrossRefzbMATHGoogle Scholar - 56.Gossez, J. P., Manásevich, R.: On a nonlinear eigenvalue problem in Orlicz–Sobolev spaces. Proc. Roy. Soc. Edinburgh A
**132**, 891–909 (2002)CrossRefzbMATHGoogle Scholar - 57.Guedda, M., Veron, L.: Bifurcation Phenomena Associated to the
*p*-Laplace Operator. Transactions of the American Mathematical Society**310**, 419–431 (1988)MathSciNetzbMATHGoogle Scholar - 58.Guseinov, G.Sh., Kaymakcalan, B.: On a disconjugacy criterion for second order dynamic equations on time scales. J. of Comp. and Appl. Math.
**141**, 187–196 (2002)MathSciNetCrossRefzbMATHGoogle Scholar - 61.Harris, B. J.: On an inequality of Lyapunov for disfocality. Journal of Mathematical Analysis and Applications
**146**, 495–500 (1990)MathSciNetCrossRefzbMATHGoogle Scholar - 62.Harris, B. J., Kong, Q.: On the oscillation of differential equations with an oscillatory coefficient. Transactions of the American Mathematical Society
**347**, 1831–1839 (1995)MathSciNetCrossRefzbMATHGoogle Scholar - 63.Hartman, P., Wintner, A.: On an Oscillation Criterion of Liapunoff. American Journal of Mathematics
**73**, 885–890 (1951)MathSciNetCrossRefzbMATHGoogle Scholar - 64.Hille, E.: An Application of Prüfer’s Method to a Singular Boundary Value Problem. Mathematische Zeitschrift
**72**, 95–106 (1959)MathSciNetCrossRefzbMATHGoogle Scholar - 69.Kabeya, Y., Yanagida, E.: Eigenvalue problems in the whole space with radially symmetric weight. Communications in Partial Differential Equations
**24**, 1127–1166 (1999)MathSciNetCrossRefzbMATHGoogle Scholar - 70.Kac, M.: Can One Hear the Shape of a Drum?, American Math. Monthly (Slaught Mem. Papers, nr. 11)
**73**, 1–23 (1966)Google Scholar - 71.Kolodner, I.: Heavy rotation string: a nonlinear eigenvalue problem. Comm. Pure Appl. Math.
**8**, 395–408 (1955)MathSciNetCrossRefzbMATHGoogle Scholar - 72.Kusano T., Naito, M.: On the Number of Zeros of Nonoscillatory Solutions to Half-Linear Ordinary Differential Equations Involving a Parameter. Transactions of the American Mathematical Society
**354**, 4751–4767 (2002)MathSciNetCrossRefzbMATHGoogle Scholar - 73.Kwong, M. K.: On Lyapunov’s inequality for disfocality. J. Math. Anal. Appl.
**83**, 486–494 (1981)MathSciNetCrossRefzbMATHGoogle Scholar - 75.Lee, C.-F., Yeh, C.-C., Hong, C.-H., Agarwal, R. P.: Lyapunov and Wirtinger Inequalities. Appl. Math. Letters
**17**, 847–853 (2004)MathSciNetCrossRefzbMATHGoogle Scholar - 76.Levin, A.: A Comparison Principle for Second Order Differential Equations. Sov. Mat. Dokl.
**1**, 1313–1316 (1960)zbMATHGoogle Scholar - 78.Li, H. J., Yeh, C. C.: Sturmian Comparison Theorem for Half Linear Second Order Differential Equations. Proc. Royal Soc. Edinburgh, Sect. A
**125**, 1193–1204 (1995)MathSciNetzbMATHGoogle Scholar - 79.Lützen, J., Mingarelli, A.: Charles François Sturm and Differential Equations. In: Pont, J.-C. (ed.) in collaboration with Padovani F.: Collected Works of Charles François Sturm, pp. 25–48. Birkäuser (2009)Google Scholar
- 80.Lyapunov, A.:
*Problème General de la Stabilité du Mouvement*, Ann. Math. Studies 17, Princeton Univ. Press, 1949 (reprinted from Ann. Fac. Sci. Toulouse,**9**, 204–474 (1907). Translation of the original paper published in Comm. Soc. Math. Kharkow (1892)Google Scholar - 82.Merdivenci Atici, F., Guseinov, G. Sh., Kaymakcalan, B.: On Lyapunov Inequality in Stability Theory for Hills Equation on Time Scales. J. of Ineq. and Appl.
**5**, 603–620 (2000)zbMATHGoogle Scholar - 83.Mustonen, V., Tienari, M.: An eigenvalue problem for generalized Laplacian in Orlicz–Sobolev spaces. Proc. Royal Soc. Edinburgh A
**129**, 153–163 (1999)MathSciNetCrossRefzbMATHGoogle Scholar - 84.Naimark, K., Solomyak, M.: Regular and pathological eigenvalue behavior for the equation \(-\lambda u{\prime}{\prime} = V u\) on the semiaxis. J. Functional Analysis
**151**, 504–530 (1997)MathSciNetCrossRefzbMATHGoogle Scholar - 85.Naito, M.: On the Number of Zeros of Nonoscillatory Solutions to Higher-Order Linear Ordinary Differential Equations. Monatsh. Math.
**136**, 237–242 (2002)MathSciNetCrossRefzbMATHGoogle Scholar - 88.Nehari, Z.: Some eigenvalue estimates. Journal d’ Analyse Mathematique
**7**, 79–88 (1959)MathSciNetCrossRefzbMATHGoogle Scholar - 89.Nehari, Z.: Extremal problems for a class of functionals defined on convex sets. Bull. Amer. Math. Soc.
**73**, 584–591 (1967)MathSciNetCrossRefzbMATHGoogle Scholar - 91.Pachpatte, B. G.: Lyapunov-type integral inequalities for certain differential equations. Georgian Math. J.
**4**, 139–148 (1997)MathSciNetCrossRefGoogle Scholar - 92.Pachpatte, B. G.: Mathematical Inequalities. North Holland Math. Library, Elsevier (2005)zbMATHGoogle Scholar
- 93.Patula, W. T.: On the Distance between Zeroes. Proceedings of the American Mathematical Society
**52**, 247–251 (1975)MathSciNetCrossRefzbMATHGoogle Scholar - 94.Pinasco, J. P.: Lower bounds for eigenvalues of the one-dimensional
*p*-Laplacian. Abstract and Applied Analysis**2004**, 147–153 (2004)MathSciNetCrossRefzbMATHGoogle Scholar - 96.Pinasco, J. P.: The Distribution of Non-Principal Eigenvalues of Singular Second Order Linear Ordinary Differential Equations. Int. J. of Mathematics and Mathematical Sciences
**2006**, 1–7 (2006)MathSciNetCrossRefGoogle Scholar - 97.Pinasco, J. P.: Comparison of eigenvalues for the
*p*-Laplacian with integral inequalities, Appl. Math. Comput.**182**, 1399–1404 (2006)MathSciNetCrossRefzbMATHGoogle Scholar - 98.Pinasco, J. P., Scarola, C.: Density of Zeros of Eigenfunctions of Singular Sturm Liouville Problems. Preprint (2013)Google Scholar
- 100.Reid, W. T.: A matrix Liapunov inequality. J. of Math. Anal. and Appl.
**32**, 424–434 (1970)CrossRefzbMATHGoogle Scholar - 102.Reid, W. T.: Interrelations between a trace formula and Liapunov type inequalities. J. of Differential Equations
**23**, 448–458 (1977)CrossRefzbMATHGoogle Scholar - 103.Riddell, R. C.: Nonlinear eigenvalue problems and spherical fibrations of Banach spaces. J. of Functional Analysis
**18**, 213–270 (1975)MathSciNetCrossRefzbMATHGoogle Scholar - 105.Solomyak, M.: On a class of spectral problems on the half-line and their applications to multi-dimensional problems. Preprint arXiv:1203.1156 (2012)Google Scholar
- 106.St. Mary, D. F.: Some Oscillation and Comparison Theorems for \((r(t)y{\prime}){\prime} + p(t)y = 0\), J. of Differential Equations,
**5**, 314–323 (1969)Google Scholar - 107.Sturm, C.: Mémoire Sur les Équations différentielles linéaires du second ordre; Journal de Liouville
**I**, 106–186 (1836). In: Pont, J.-C. (ed.) in collaboration with Padovani F.: Collected Works of Charles François Sturm. Birkäuser (2009).Google Scholar - 109.Tienari, M.: Lyusternik–Schnirelmann Theorem for the Generalized Laplacian. J. Differential Equations
**161**, 174–190 (2000)MathSciNetCrossRefzbMATHGoogle Scholar - 112.Weyl, H.: Über die asymptotische Verteilung der Eigenwerte, Nachrichten der Königlichen Gesellschaft der Wissenschaften zu Göttingen, 110–117 (1911)Google Scholar
- 114.Yang, X.: On inequalities of Lyapunov type. Applied Math. Comp.
**134**, 293–300 (2003)CrossRefzbMATHGoogle Scholar - 116.Zhang, Q.-M., Tang, X. H.: Lyapunov-type inequalities for even order difference equations. Applied Mathematics Letters
**25**, 1830–1834 (2012)MathSciNetCrossRefzbMATHGoogle Scholar

## Copyright information

© Juan Pablo Pinasco 2013