The Role of Radiation Therapy in the Treatment of Multiple Myeloma, Plasmacytoma, and Other Plasma Cell Disorders

  • Prashant Kapoor
  • James A. Martenson


Plasma cell malignancies are radioresponsive. Radiation is used as primary or adjunctive therapy of plasma cell disorders (PCDs). Palliation of symptoms is the commonest indication for radiation to the skeletal and soft tissue myelomatous lesions. Other indications include pretransplant conditioning, myeloma-related cord compression, or impending pathological fractures. Radiation is also utilized in the management of solitary osseous and extramedullary plasmacytomas, POEMS syndrome with a limited number of lesions, localized AL amyloidosis and rarely, Waldenström’s macroglobulinemia. Anecdotal reports outlining successful use of radiation with novel anti-myeloma agents exist. This chapter focuses on conventional radiation and chemo-radiation-based management strategies in PCDs.


Multiple Myeloma National Comprehensive Cancer Network National Comprehensive Cancer Network Intensity Modulate Radiation Therapy Autologous Stem Cell Transplantation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Featherstone C, et al. Estimating the optimal utilization rates of radiotherapy for hematologic malignancies from a review of the evidence: part II-leukemia and myeloma. Cancer. 2005;103(2):393–401.PubMedCrossRefGoogle Scholar
  2. 2.
    Kapoor P, et al. Anti-CD20 monoclonal antibody therapy in multiple myeloma. Br J Haematol. 2008;141(2): 135–48.PubMedCrossRefGoogle Scholar
  3. 3.
    Dingli D, et al. Image-guided radiovirotherapy for multiple myeloma using a recombinant measles virus expressing the thyroidal sodium iodide symporter. Blood. 2004;103(5):1641–6.PubMedCrossRefGoogle Scholar
  4. 4.
    Goel A, et al. Radioiodide imaging and radiovirotherapy of multiple myeloma using VSV(Delta51)-NIS, an attenuated vesicular stomatitis virus encoding the sodium iodide symporter gene. Blood. 2007;110(7): 2342–50.PubMedCrossRefGoogle Scholar
  5. 5.
    Dispenzieri A, et al. A phase II study of (153)Sm-EDTMP and high-dose melphalan as a peripheral blood stem cell conditioning regimen in patients with multiple myeloma. Am J Hematol. 2010;85(6):409–13.PubMedGoogle Scholar
  6. 6.
    Kyle RA, et al. Review of 1027 patients with newly diagnosed multiple myeloma. Mayo Clin Proc. 2003;78(1):21–33.PubMedCrossRefGoogle Scholar
  7. 7.
    Leigh BR, et al. Radiation therapy for the palliation of multiple myeloma. Int J Radiat Oncol Biol Phys. 1993;25(5):801–4.PubMedCrossRefGoogle Scholar
  8. 8.
    Mose S, et al. Role of radiotherapy in the treatment of multiple myeloma. Strahlenther Onkol. 2000;176(11): 506–12.PubMedCrossRefGoogle Scholar
  9. 9.
    Wu JS, et al. Meta-analysis of dose-fractionation radiotherapy trials for the palliation of painful bone metastases. Int J Radiat Oncol Biol Phys. 2003;55(3):594–605.PubMedCrossRefGoogle Scholar
  10. 10.
    Shakespeare TP, Thiagarajan A, Gebski V. Evaluation of the quality of radiotherapy randomized trials for painful bone metastases. Cancer. 2005;103(9):1976–81.PubMedCrossRefGoogle Scholar
  11. 11.
    Mill WB, Griffith R. The role of radiation therapy in the management of plasma cell tumors. Cancer. 1980;45(4):647–52.PubMedCrossRefGoogle Scholar
  12. 12.
    Bird JM, et al. Guidelines for the diagnosis and management of multiple myeloma 2011. Br J Haematol. 2011;154(1):32–75.PubMedCrossRefGoogle Scholar
  13. 13.
    Hartsell WF, et al. Randomized trial of short- versus long-course radiotherapy for palliation of painful bone metastases. J Natl Cancer Inst. 2005;97(11):798–804.PubMedCrossRefGoogle Scholar
  14. 14.
    Rades D, et al. Prognostic factors for local control and survival in patients with spinal cord compression from myeloma. Strahlenther Onkol. 2012;188(7):628–31.PubMedCrossRefGoogle Scholar
  15. 15.
    Bera S, et al. Dexamethasone-induced oxidative stress enhances myeloma cell radiosensitization while sparing normal bone marrow hematopoiesis. Neoplasia. 2010;12(12):980–92.PubMedGoogle Scholar
  16. 16.
    Wallington M, et al. Local control and survival in spinal cord compression from lymphoma and myeloma. Radiother Oncol. 1997;42(1):43–7.PubMedCrossRefGoogle Scholar
  17. 17.
    Rades D, et al. Short-course radiotherapy is not optimal for spinal cord compression due to myeloma. Int J Radiat Oncol Biol Phys. 2006;64(5):1452–7.PubMedCrossRefGoogle Scholar
  18. 18.
    Lecouvet F, et al. Long-term effects of localized spinal radiation therapy on vertebral fractures and focal lesions appearance in patients with multiple myeloma. Br J Haematol. 1997;96(4):743–5.PubMedCrossRefGoogle Scholar
  19. 19.
    Yeh HS, Berenson JR. Treatment for myeloma bone disease. Clin Cancer Res. 2006;12(20 Pt 2): 6279s–84.PubMedCrossRefGoogle Scholar
  20. 20.
    Rao G, et al. Multiple myeloma of the cervical spine: treatment strategies for pain and spinal instability. J Neurosurg Spine. 2006;5(2):140–5.PubMedCrossRefGoogle Scholar
  21. 21.
    Townsend PW, et al. Role of postoperative radiation therapy after stabilization of fractures caused by metastatic disease. Int J Radiat Oncol Biol Phys. 1995;31(1):43–9.PubMedCrossRefGoogle Scholar
  22. 22.
    Dimopoulos MA, et al. Curability of solitary bone plasmacytoma. J Clin Oncol. 1992;10(4):587–90.PubMedGoogle Scholar
  23. 23.
    Hu K, Yahalom J. Radiotherapy in the management of plasma cell tumors. Oncology. 2000;14(1):101–8, 111; discussion 111–2, 115.PubMedGoogle Scholar
  24. 24.
    Mendenhall CM, Thar TL, Million RR. Solitary plasmacytoma of bone and soft tissue. Int J Radiat Oncol Biol Phys. 1980;6(11):1497–501.PubMedCrossRefGoogle Scholar
  25. 25.
    Galieni P, et al. Clinical outcome of extramedullary plasmacytoma. Haematologica. 2000;85(1):47–51.PubMedGoogle Scholar
  26. 26.
    Ozsahin M, et al. Outcomes and patterns of failure in solitary plasmacytoma: a multicenter Rare Cancer Network study of 258 patients. Int J Radiat Oncol Biol Phys. 2006;64(1):210–7.PubMedCrossRefGoogle Scholar
  27. 27.
    Tsang RW, et al. Solitary plasmacytoma treated with radiotherapy: impact of tumor size on outcome. Int J Radiat Oncol Biol Phys. 2001;50(1):113–20.PubMedCrossRefGoogle Scholar
  28. 28.
    Tournier-Rangeard L, et al. Radiotherapy for solitary extramedullary plasmacytoma in the head-and-neck region: a dose greater than 45 Gy to the target volume improves the local control. Int J Radiat Oncol Biol Phys. 2006;64(4):1013–7.PubMedCrossRefGoogle Scholar
  29. 29.
    Koh H, Kim I, Kim C, Kim H, Yoon S, Heo D. Clinical and prognostic features of plasmacytoma: outcome analysis of 29 cases in SNUH. Int J Radiat Oncol Biol Phys. 2010;78:S557.CrossRefGoogle Scholar
  30. 30.
    Soutar R, et al. Guidelines on the diagnosis and management of solitary plasmacytoma of bone and solitary extramedullary plasmacytoma. Clin Oncol. 2004;16(6):405–13.CrossRefGoogle Scholar
  31. 31.
    Dolin S, Dewar JP. Extramedullary plasmacytoma. Am J Pathol. 1956;32(1):83–103.PubMedGoogle Scholar
  32. 32.
    Knowling MA, Harwood AR, Bergsagel DE. Comparison of extramedullary plasmacytomas with solitary and multiple plasma cell tumors of bone. J Clin Oncol. 1983;1(4):255–62.PubMedGoogle Scholar
  33. 33.
    Liebross RH, et al. Clinical course of solitary extramedullary plasmacytoma. Radiother Oncol. 1999; 52(3):245–9.PubMedCrossRefGoogle Scholar
  34. 34.
    Bachar G, et al. Solitary extramedullary plasmacytoma of the head and neck—long-term outcome analysis of 68 cases. Head Neck. 2008;30(8):1012–9.PubMedCrossRefGoogle Scholar
  35. 35.
    Chao MW, et al. Radiotherapy in the management of solitary extramedullary plasmacytoma. Intern Med J. 2005;35(4):211–5.PubMedCrossRefGoogle Scholar
  36. 36.
    Mayr NA, et al. The role of radiation therapy in the treatment of solitary plasmacytomas. Radiother Oncol. 1990;17(4):293–303.PubMedCrossRefGoogle Scholar
  37. 37.
    Susnerwala SS, et al. Extramedullary plasmacytoma of the head and neck region: clinicopathological correlation in 25 cases. Br J Cancer. 1997;75(6):921–7.PubMedCrossRefGoogle Scholar
  38. 38.
    Dispenzieri A, et al. POEMS syndrome: definitions and long-term outcome. Blood. 2003;101(7): 2496–506.PubMedCrossRefGoogle Scholar
  39. 39.
    Dispenzieri A. How I treat POEMS syndrome. Blood. 2012;119(24):5650–8.PubMedCrossRefGoogle Scholar
  40. 40.
    Dispenzieri A. POEMS syndrome: update on diagnosis, risk-stratification, and management. Am J Hematol. 2012;87(8):804–14.PubMedCrossRefGoogle Scholar
  41. 41.
    Humeniuk MS, Gertz MA, Lacy MQ, Kyle RA, Hayman SR, Kumar SK, et al. Outcomes of patients with POEMS syndrome treated initially with radiation. Blood. 2013;122(1):68–73.Google Scholar
  42. 42.
    MacKenzie MR, et al. Consolidation hemibody radiotherapy following induction combination chemotherapy in high-tumor-burden multiple myeloma. J Clin Oncol. 1992;10(11):1769–74.PubMedGoogle Scholar
  43. 43.
    Salmon SE, et al. Chemotherapy is superior to sequential hemibody irradiation for remission consolidation in multiple myeloma: a Southwest Oncology Group study. J Clin Oncol. 1990;8(9):1575–84.PubMedGoogle Scholar
  44. 44.
    Shrieve D. The role of radiotherapy. In: Mehta J, Singhal S, editors. Myeloma. London: Martin Dunitz; 2002.Google Scholar
  45. 45.
    Ozsahin M, et al. Total-body irradiation before bone marrow transplantation. Results of two randomized instantaneous dose rates in 157 patients. Cancer. 1992;69(11):2853–65.PubMedCrossRefGoogle Scholar
  46. 46.
    Attal M, et al. A prospective, randomized trial of autologous bone marrow transplantation and chemotherapy in multiple myeloma. Intergroupe Francais du Myelome. N Engl J Med. 1996;335(2):91–7.PubMedCrossRefGoogle Scholar
  47. 47.
    Moreau P, et al. Comparison of 200 mg/m(2) melphalan and 8 Gy total body irradiation plus 140 mg/m(2) melphalan as conditioning regimens for peripheral blood stem cell transplantation in patients with newly diagnosed multiple myeloma: final analysis of the Intergroupe Francophone du Myelome 9502 randomized trial. Blood. 2002;99(3):731–5.PubMedCrossRefGoogle Scholar
  48. 48.
    Barlogie B, et al. Standard chemotherapy compared with high-dose chemoradiotherapy for multiple myeloma: final results of phase III US Intergroup Trial S9321. J Clin Oncol. 2006;24(6):929–36.PubMedCrossRefGoogle Scholar
  49. 49.
    Lokhorst HM, et al. Partially T-cell-depleted allogeneic stem-cell transplantation for first-line treatment of multiple myeloma: a prospective evaluation of patients treated in the phase III study HOVON 24 MM. J Clin Oncol. 2003;21(9):1728–33.PubMedCrossRefGoogle Scholar
  50. 50.
    Lokhorst H, et al. International Myeloma Working Group consensus statement regarding the current status of allogeneic stem-cell transplantation for multiple myeloma. J Clin Oncol. 2010;28(29):4521–30.PubMedCrossRefGoogle Scholar
  51. 51.
    Bruno B, et al. A comparison of allografting with autografting for newly diagnosed myeloma. N Engl J Med. 2007;356(11):1110–20.PubMedCrossRefGoogle Scholar
  52. 52.
    Krishnan A, et al. Autologous haemopoietic stem-cell transplantation followed by allogeneic or autologous haemopoietic stem-cell transplantation in patients with multiple myeloma (BMT CTN 0102): a phase 3 biological assignment trial. Lancet Oncol. 2011;12(13):1195–203.PubMedCrossRefGoogle Scholar
  53. 53.
    Dispenzieri A. Is there a future for auto-allo HSCT in multiple myeloma? Lancet Oncol. 2011;12(13): 1176–7.PubMedCrossRefGoogle Scholar
  54. 54.
    Goel A, et al. PS-341-mediated selective targeting of multiple myeloma cells by synergistic increase in ionizing radiation-induced apoptosis. Exp Hematol. 2005;33(7):784–95.PubMedCrossRefGoogle Scholar
  55. 55.
    Blade J, et al. Soft-tissue plasmacytomas in multiple myeloma: incidence, mechanisms of extramedullary spread, and treatment approach. J Clin Oncol. 2011;29(28):3805–12.PubMedCrossRefGoogle Scholar
  56. 56.
    Rosinol L, et al. Extramedullary multiple myeloma escapes the effect of thalidomide. Haematologica. 2004;89(7):832–6.PubMedGoogle Scholar
  57. 57.
    Laura R, et al. Bortezomib: an effective agent in extramedullary disease in multiple myeloma. Eur J Haematol. 2006;76(5):405–8.PubMedCrossRefGoogle Scholar
  58. 58.
    Berges O, et al. Concurrent radiation therapy and bortezomib in myeloma patient. Radiother Oncol. 2008;86(2):290–2.PubMedCrossRefGoogle Scholar
  59. 59.
    Marchand V, et al. Concurrent radiation therapy and lenalidomide in myeloma patient. Radiother Oncol. 2008;87(1):152–3.PubMedCrossRefGoogle Scholar
  60. 60.
    Mohiuddin MM, Harmon DC, Delaney TF. Severe acute enteritis in a multiple myeloma patient receiving bortezomib and spinal radiotherapy: case report. J Chemother. 2005;17(3):343–6.PubMedGoogle Scholar
  61. 61.
    Thibault I, Vallieres I. Macroglossia due to systemic amyloidosis: is there a role for radiotherapy? Case Rep Oncol. 2011;4(2):392–9.PubMedCrossRefGoogle Scholar
  62. 62.
    Gallivan GJ, Gallivan HK. Laryngeal amyloidosis causing hoarseness and airway obstruction. J Voice. 2010;24(2):235–9.PubMedCrossRefGoogle Scholar
  63. 63.
    Kalra S, et al. External-beam radiation therapy in the treatment of diffuse tracheobronchial amyloidosis. Mayo Clin Proc. 2001;76(8):853–6.PubMedGoogle Scholar
  64. 64.
    Monroe AT, et al. Tracheobronchial amyloidosis: a case report of successful treatment with external beam radiation therapy. Chest. 2004;125(2):784–9.PubMedCrossRefGoogle Scholar
  65. 65.
    Neben-Wittich MA, Foote RL, Kalra S. External beam radiation therapy for tracheobronchial amyloidosis. Chest. 2007;132(1):262–7.PubMedCrossRefGoogle Scholar
  66. 66.
    O’Regan A, et al. Tracheobronchial amyloidosis. The Boston University experience from 1984 to 1999. Medicine. 2000;79(2):69–79.PubMedCrossRefGoogle Scholar
  67. 67.
    Tesei F, et al. Extramedullary plasmocytoma (EMP) of the head and neck: a series of 22 cases. Acta Otorhinolaryngol Ital. 1995;15(6):437–42.PubMedGoogle Scholar
  68. 68.
    Pecora JL, Sambursky JS, Vargha Z. Radiation therapy in amyloidosis of the eyelid and conjunctiva: a case report. Ann Ophthalmol. 1982;14(2):194–6.PubMedGoogle Scholar
  69. 69.
    Grewal JS, et al. Bing-Neel syndrome: a case report and systematic review of clinical manifestations, diagnosis, and treatment options. Clin Lymphoma Myeloma. 2009;9(6):462–6.PubMedCrossRefGoogle Scholar
  70. 70.
    Malkani RG, et al. Bing-Neel syndrome: an illustrative case and a comprehensive review of the published literature. J Neurooncol. 2010;96(3): 301–12.PubMedCrossRefGoogle Scholar
  71. 71.
    Kapoor P, et al. Splenectomy in plasma cell dyscrasias: a review of the clinical practice. Am J Hematol. 2006;81(12):946–54.PubMedCrossRefGoogle Scholar
  72. 72.
    Takemori N, et al. Durable remission after splenectomy for Waldenstrom’s macroglobulinemia with massive splenomegaly in leukemic phase. Leuk Lymphoma. 1997;26(3–4):387–93.PubMedGoogle Scholar
  73. 73.
    Shueng PW, et al. Total marrow irradiation with helical tomotherapy for bone marrow transplantation of multiple myeloma: first experience in Asia. Technol Cancer Res Treat. 2009;8(1):29–38.PubMedGoogle Scholar
  74. 74.
    Wong JY, et al. Image-guided total-marrow irradiation using helical tomotherapy in patients with multiple myeloma and acute leukemia undergoing hematopoietic cell transplantation. Int J Radiat Oncol Biol Phys. 2009;73(1):273–9.PubMedCrossRefGoogle Scholar
  75. 75.
    Somlo G, et al. Total marrow irradiation: a new ablative regimen as part of tandem autologous stem cell transplantation for patients with multiple myeloma. Clin Cancer Res. 2011;17(1):174–82.PubMedCrossRefGoogle Scholar
  76. 76.
    Vosmik M, et al. Solitary extramedullary plasmacytoma in the oropharynx: advantages of intensity-modulated radiation therapy. Clin Lymphoma Myeloma. 2007;7(6):434–7.PubMedCrossRefGoogle Scholar

Copyright information

© Mayo Foundation for Medical Education and Research 2014

Authors and Affiliations

  1. 1.Division of Hematology, Department of Internal MedicineMayo ClinicRochesterUSA
  2. 2.Division of Radiation OncologyMayo ClinicRochesterUSA

Personalised recommendations