Skip to main content

Renal Function in the Elderly

  • Chapter
  • First Online:
Geriatric Trauma and Critical Care

Abstract

Understanding age-related changes in renal function is essential for intensivists as renal parenchymal diminution limits the elderly’s ability to clear water and solute. Standard functional estimates may be inappropriate due to critical illness, malnutrition, age, and hypovolemia due to age-related thirst attenuation. These factors should be considered during resuscitation to titrate therapy and affect the results and interpretation of ordinary laboratory assays used to evaluate renal function dose medications and manage elderly patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pannarale G, Carbone R, Del Mastro G, et al. The aging kidney: structural changes. J Nephrol. 2010;23 Suppl 15:S37–40.

    PubMed  Google Scholar 

  2. Perazella MA, Coca SG, Kanbay M, et al. Diagnostic value of urine microscopy for differential diagnosis of acute kidney injury in hospitalized patients. Clin J Am Soc Nephrol. 2008;3:1615–9.

    Article  PubMed  Google Scholar 

  3. Steffl JL, Bennett W, Olyaei AJ. The old and new methods of assessing kidney function. J Clin Pharmacol. 2012;52:63S–71.

    Article  CAS  PubMed  Google Scholar 

  4. Swaminathan R, Major P, Snieder H, et al. Serum creatinine and fat-free mass (lean body mass). Clin Chem. 2000;46:1695–6.

    CAS  PubMed  Google Scholar 

  5. Baxmann AC, Ahmed MS, Marques NC, et al. Influence of muscle mass and physical activity on serum and urinary creatinine and serum cystatin C. Clin J Am Soc Nephrol. 2008;3:348–54.

    Article  CAS  PubMed  Google Scholar 

  6. Candela-Toha AM, Recio-Vazquez M, Delgado-Montero A, et al. The calculation of baseline serum creatinine overestimates the diagnosis of acute kidney injury in patients undergoing cardiac surgery. Nefrologia. 2012;32:53–8.

    CAS  PubMed  Google Scholar 

  7. Bagshaw SM, Uchino S, Cruz D, et al. A comparison of observed versus estimated baseline creatinine for determination of RIFLE class in patients with acute kidney injury. Nephrol Dial Transplant. 2009;24:2739–44.

    Article  CAS  PubMed  Google Scholar 

  8. Phillips PA, Johnston CI, Gray L. Disturbed fluid and electrolyte homoeostasis following dehydration in elderly people. Age Ageing. 1993;22:S26–33.

    Article  CAS  PubMed  Google Scholar 

  9. Kenney WL, Chiu P. Influence of age on thirst and fluid intake. Med Sci Sports Exerc. 2001;33:1524–32.

    Article  CAS  PubMed  Google Scholar 

  10. Stachenfeld NS, DiPietro L, Nadel ER, et al. Mechanism of attenuated thirst in aging: role of central volume receptors. Am J Physiol. 1997;272:R148–57.

    CAS  PubMed  Google Scholar 

  11. Johnson AK, Thunhorst RL. The neuroendocrinology of thirst and salt appetite: visceral sensory signals and mechanisms of central integration. Front Neuroendocrinol. 1997;18:292–353.

    Article  CAS  PubMed  Google Scholar 

  12. Thornton SN. Thirst and hydration: physiology and consequences of dysfunction. Physiol Behav. 2010;100:15–21.

    Article  CAS  PubMed  Google Scholar 

  13. Farrell MJ, Bowala TK, Gavrilescu M, et al. Cortical activation and lamina terminalis functional connectivity during thirst and drinking in humans. Am J Physiol Regul Integr Comp Physiol. 2011;301:R623–31.

    Article  CAS  PubMed  Google Scholar 

  14. Rodriguez GJ, Cordina SM, Vazquez G, et al. The hydration influence on the risk of stroke (THIRST) study. Neurocrit Care. 2009;10:187–94.

    Article  PubMed  Google Scholar 

  15. Fukunaka Y, Shinkai T, Hwang R, et al. The orexin 1 receptor (HCRTR1) gene as a susceptibility gene contributing to polydipsia-hyponatremia in schizophrenia. Neuromolecular Med. 2007;9:292–7.

    Article  CAS  PubMed  Google Scholar 

  16. Diepvens K, Haberer D, Westerterp-Plantenga M. Different proteins and biopeptides differently affect satiety and anorexigenic/orexigenic hormones in healthy humans. Int J Obes (Lond). 2008;32:510–8.

    Article  CAS  Google Scholar 

  17. Strazzullo P, Barbato A, Vuotto P, et al. Relationships between salt sensitivity of blood pressure and sympathetic nervous system activity: a short review of evidence. Clin Exp Hypertens. 2001;23:25–33.

    Article  CAS  PubMed  Google Scholar 

  18. Sabiston DC, Townsend CM. Sabiston textbook of surgery: the biological basis of modern surgical practice. Philadelphia: Elsevier/Saunders; 2012.

    Google Scholar 

  19. Pepin MN, Bouchard J, Legault L, et al. Diagnostic performance of fractional excretion of urea and fractional excretion of sodium in the evaluations of patients with acute kidney injury with or without diuretic treatment. Am J Kidney Dis. 2007;50:566–73.

    Article  PubMed  Google Scholar 

  20. Carvounis CP, Nisar S, Guro-Razuman S. Significance of the fractional excretion of urea in the differential diagnosis of acute renal failure. Kidney Int. 2002;62:2223–9.

    Article  CAS  PubMed  Google Scholar 

  21. Fenske W, Stork S, Koschker AC, et al. Value of fractional uric acid excretion in differential diagnosis of hyponatremic patients on diuretics. J Clin Endocrinol Metab. 2008;93:2991–7.

    Article  CAS  PubMed  Google Scholar 

  22. Cecil RL, Goldman L, Schafer AI. Goldman’s Cecil medicine. Philadelphia: Elsevier/Saunders; 2012.

    Google Scholar 

  23. McPherson RA, Pincus MR, Henry JB. Henry’s clinical diagnosis and management by laboratory methods. Philadelphia: Saunders/Elsevier; 2007.

    Google Scholar 

  24. Rule AD, Rodeheffer RJ, Larson TS, et al. Limitations of estimating glomerular filtration rate from serum creatinine in the general population. Mayo Clin Proc. 2006;81:1427–34.

    Article  CAS  PubMed  Google Scholar 

  25. Prigent A. Monitoring renal function and limitations of renal function tests. Semin Nucl Med. 2008;38:32–46.

    Article  PubMed  Google Scholar 

  26. Brenner BM, Rector FC. Brenner & Rector’s the kidney. Philadelphia: Saunders/Elsevier; 2008.

    Google Scholar 

  27. Stevens LA, Coresh J, Greene T, et al. Assessing kidney function – measured and estimated glomerular filtration rate. N Engl J Med. 2006;354:2473–83.

    Article  CAS  PubMed  Google Scholar 

  28. Baptista JP, Udy AA, Sousa E, et al. A comparison of estimates of glomerular filtration in critically ill patients with augmented renal clearance. Crit Care. 2011;15:R139.

    Article  PubMed  Google Scholar 

  29. Fassett RG, Venuthurupalli SK, Gobe GC, et al. Biomarkers in chronic kidney disease: a review. Kidney Int. 2011;80:806–21.

    Article  CAS  PubMed  Google Scholar 

  30. Siew ED, Ware LB, Ikizler TA. Biological markers of acute kidney injury. J Am Soc Nephrol. 2011;22:810–20.

    Article  PubMed  Google Scholar 

  31. Bagshaw SM, Bennett M, Haase M, et al. Plasma and urine neutrophil gelatinase-associated lipocalin in septic versus non-septic acute kidney injury in critical illness. Intensive Care Med. 2010;36:452–61.

    Article  CAS  PubMed  Google Scholar 

  32. Kellum JA. Acute kidney injury. Crit Care Med. 2008;36:S141–5.

    Article  PubMed  Google Scholar 

  33. Brown JR, Thompson CA. Contrast-induced acute kidney injury: the at-risk patient and protective measures. Curr Cardiol Rep. 2010;12:440–5.

    Article  PubMed  Google Scholar 

  34. Coca SG, Cho KC, Hsu CY. Acute kidney injury in the elderly: predisposition to chronic kidney disease and vice versa. Nephron Clin Pract. 2011;119 Suppl 1:c19–24.

    Article  PubMed  Google Scholar 

  35. Jacobson PA, Schladt D, Israni A, et al. Genetic and clinical determinants of early, acute calcineurin inhibitor-related nephrotoxicity: results from a kidney transplant consortium. Transplantation. 2012;93:624–31.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Kuypers DR. Immunotherapy in elderly transplant recipients: a guide to clinically significant drug interactions. Drugs Aging. 2009;26:715–37.

    Article  CAS  PubMed  Google Scholar 

  37. Haase M, Story DA, Haase-Fielitz A. Renal injury in the elderly: diagnosis, biomarkers and prevention. Best Pract Res Clin Anaesthesiol. 2011;25:401–12.

    Article  CAS  PubMed  Google Scholar 

  38. Del Giudice A, Aucella F. Acute renal failure in the elderly: epidemiology and clinical features. J Nephrol. 2012;25:S48–57.

    Article  PubMed  Google Scholar 

  39. Hoste EA, Schurgers M. Epidemiology of acute kidney injury: how big is the problem? Crit Care Med. 2008;36:S146–51.

    Article  PubMed  Google Scholar 

  40. Bagshaw SM, George C, Gibney RT, et al. A multi-center evaluation of early acute kidney injury in critically ill trauma patients. Ren Fail. 2008;30:581–9.

    Article  PubMed  Google Scholar 

  41. Bagshaw SM, George C, Bellomo R, et al. Early acute kidney injury and sepsis: a multicentre evaluation. Crit Care. 2008;12:R47.

    Article  PubMed  Google Scholar 

  42. Kinsey GR, Okusa MD. Pathogenesis of acute kidney injury: foundation for clinical practice. Am J Kidney Dis. 2011;58:291–301.

    Article  PubMed Central  PubMed  Google Scholar 

  43. De Waele JJ, De Laet I, Kirkpatrick AW, et al. Intra-abdominal hypertension and abdominal compartment syndrome. Am J Kidney Dis. 2011;57:159–69.

    Article  PubMed  Google Scholar 

  44. Ronco C, Bellomo R, Kellum JA. Critical care nephrology. Philadelphia: Saunders/Elsevier; 2009.

    Google Scholar 

  45. Luckianow GM, Ellis M, Governale D, et al. Abdominal compartment syndrome: risk factors, diagnosis, and current therapy. Crit Care Res Pract. 2012;2012:908169.

    PubMed Central  PubMed  Google Scholar 

  46. Chronopoulos A, Rosner MH, Cruz DN, et al. Acute kidney injury in the elderly: a review. Contrib Nephrol. 2010;165:315–21.

    Article  PubMed  Google Scholar 

  47. Van Slyke DD. Some points of acid–base history in physiology and medicine. Ann N Y Acad Sci. 1966;133:5–14.

    Article  PubMed  Google Scholar 

  48. Stewart PA. Modern quantitative acid–base chemistry. Can J Physiol Pharmacol. 1983;61:1444–61.

    Article  CAS  PubMed  Google Scholar 

  49. Story DA. Bench-to-bedside review: a brief history of clinical acid–base. Crit Care. 2004;8:253–8.

    Article  PubMed  Google Scholar 

  50. Naka T, Bellomo R. Bench-to-bedside review: treating acid–base abnormalities in the intensive care unit–the role of renal replacement therapy. Crit Care. 2004;8:108–14.

    Article  PubMed  Google Scholar 

  51. Kaplan LJ, Kellum JA. Fluids, pH, ions and electrolytes. Curr Opin Crit Care. 2010;16:323–31.

    Article  PubMed  Google Scholar 

  52. Stewart PA, Kellum JA, Elbers PWG. Stewart’s textbook of acid–base. Amsterdam: AcidBase.org; 2009.

    Google Scholar 

  53. Wilkes NJ, Woolf R, Mutch M, et al. The effects of balanced versus saline-based hetastarch and crystalloid solutions on acid–base and electrolyte status and gastric mucosal perfusion in elderly surgical patients. Anesth Analg. 2001;93:811–6.

    Article  CAS  PubMed  Google Scholar 

  54. Kaplan LJ, Kellum JA. Initial pH, base deficit, lactate, anion gap, strong ion difference, and strong ion gap predict outcome from major vascular injury. Crit Care Med. 2004;32:1120–4.

    Article  CAS  PubMed  Google Scholar 

  55. Zehtabchi S, Soghoian S, Sinert R. Utility of Stewart’s strong ion difference as a predictor of major injury after trauma in the ED. Am J Emerg Med. 2007;25:938–41.

    Article  PubMed  Google Scholar 

  56. Corey HE, Vallo A, Rodriguez-Soriano J. An analysis of renal tubular acidosis by the Stewart method. Pediatr Nephrol. 2006;21:206–11.

    Article  PubMed  Google Scholar 

  57. Balasubramanyan N, Havens PL, Hoffman GM. Unmeasured anions identified by the Fencl-Stewart method predict mortality better than base excess, anion gap, and lactate in patients in the pediatric intensive care unit. Crit Care Med. 1999;27:1577–81.

    Article  CAS  PubMed  Google Scholar 

  58. Guidet B, Soni N, Della Rocca G, Kozek S, Vallet B, Annane D, James M. A balanced view of balanced solutions. Crit Care. 2012;14:325.

    Article  Google Scholar 

  59. Martin M, Murray J, Berne T, et al. Diagnosis of acid–base derangements and mortality prediction in the trauma intensive care unit: the physiochemical approach. J Trauma. 2005;58:238–43.

    Article  PubMed  Google Scholar 

  60. Naka T, Bellomo R, Morimatsu H, et al. Acid–base balance in combined severe hepatic and renal failure: a quantitative analysis. Int J Artif Organs. 2008;31:288–94.

    CAS  PubMed  Google Scholar 

  61. Liskaser F, Story DA, Hayhoe M, et al. Effect of pump prime on acidosis, strong-ion-difference and unmeasured ions during cardiopulmonary bypass. Anaesth Intensive Care. 2009;37:767–72.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lewis J. Kaplan MD, FACS, FCCM, FCCP .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Johnson, D.C., Kaplan, L.J. (2014). Renal Function in the Elderly. In: Yelon, J., Luchette, F. (eds) Geriatric Trauma and Critical Care. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8501-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-8501-8_4

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-8500-1

  • Online ISBN: 978-1-4614-8501-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics