Skip to main content

Quantitative Evaluation of Liver Function Within MR Imaging

  • Chapter
  • First Online:
Abdomen and Thoracic Imaging

Abstract

Hepatocellular uptake index (HUI) is a quantitative indicator of excretory liver function, which is obtained from signal intensity of the liver and spleen and liver volume on gadoxetate disodium-enhanced MR images. HUI correlates well with existing quantitative liver function test results, such as indocyanine green clearance, and allows segmental liver function to be evaluated even if there are regional differences in liver function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Seyama Y, Kokudo N (2009) Assessment of liver function for safe hepatic resection. Hepatol Res 39:107–116

    Article  PubMed  Google Scholar 

  2. Sakka SG (2007) Assessing liver function. Curr Opin Crit Care 13:207–214

    Article  PubMed  Google Scholar 

  3. Hagiwara M, Rusinek H, Lee VS et al (2008) Advanced liver fibrosis: diagnosis with 3D whole-liver perfusion MR imaging—initial experience. Radiology 246:926–934

    Article  PubMed  Google Scholar 

  4. Reimer P, Schneider G, Schima W (2004) Hepatobiliary contrast agents for contrast-enhanced MRI of the liver: properties, clinical development and applications. Eur Radiol 14:559–578

    Article  PubMed  Google Scholar 

  5. Weinmann HJ, Brasch RC, Press WR et al (1984) Characteristics of gadolinium-DTPA complex: a potential NMR contrast agent. AJR 142:619–624

    Article  PubMed  CAS  Google Scholar 

  6. Tofts PS, Brix G, Buckley DL et al (1999) Estimating kinetic parameters from dynamic contrast-enhanced T(1)-weighted MRI of diffusable tracer: standardized quantities and symbols. J Magn Reson Imaging 10:223–232

    Article  PubMed  CAS  Google Scholar 

  7. Miyazaki S, Murase K, Yoshikawa T et al (2008) A quantitative method for estimating hepatic blood flow using a dual-input single-compartment model. Br J Radiol 81:790–800

    Article  PubMed  CAS  Google Scholar 

  8. Wehrli FW, MacFall JR, Glover GH et al (1984) The dependence of nuclear magnetic resonance (NMR) image contrast on intrinsic and pulse sequence timing parameters. Magn Reson Imaging 2:3–16

    Article  PubMed  CAS  Google Scholar 

  9. Mørkenborg J, Pedersen M, Jensen FT et al (2003) Quantitative assessment of Gd-DTPA contrast agent from signal enhancement: an in-vitro study. Magn Reson Imaging 21:637–643

    Article  PubMed  Google Scholar 

  10. Sourbron S, Sommer WH, Reiser MF et al (2012) Combined quantification of liver perfusion and function with dynamic gadoxetic acid-enhanced MR imaging. Radiology 263:874–883

    Article  PubMed  Google Scholar 

  11. Tofts PS (2010) T1-weighted DCE imaging concepts: modelling, acquisition and analysis. MAGNETOM Flash 45:30–39

    Google Scholar 

  12. Jarnagin WR, Schwartz LH, Gultekin DH et al (2009) Regional chemotherapy for unresectable primary liver cancer: results of a phase II clinical trial and assessment of DCE-MRI as a biomarker of survival. Ann Oncol 20:1589–1595

    Article  PubMed  CAS  Google Scholar 

  13. Schuhmann-Giampieri G (1993) Nonlinear pharmacokinetic modeling of a gadolinium chelate used as a liver-specific contrast agent for magnetic resonance imaging. Arzneimittelforschung 43:1020–1024

    PubMed  CAS  Google Scholar 

  14. Kim T, Murakami T, Hasuike Y et al (1997) Experimental hepatic dysfunction: evaluation by MRI with Gd-EOB-DTPA. J Magn Reson Imaging 7:683–688

    Article  PubMed  CAS  Google Scholar 

  15. Shimizu J, Dono K, Gotoh M et al (1999) Evaluation of regional liver function by gadolinium-EOB-DTPA-enhanced MR imaging. Dig Dis Sci 44:1330–1337

    Article  PubMed  CAS  Google Scholar 

  16. Yamada A, Hara T, Li F et al (2010) Evaluation of liver function using gadoxetate disodium (Gd-EOB-DTPA) enhanced MR imaging. In: Molthen RC, Weaver JB (eds) Proc. SPIE 7626, Medical Imaging 2010: Biomedical Applications in Molecular, Structural, and Functional Imaging, San Diego, California, pp 762604–762610 (March 4, 2010) doi: 10.1117/12.843722

  17. Motosugi U, Ichikawa T, Sou H et al (2009) Liver parenchymal enhancement of hepatocyte-phase images in Gd-EOB-DTPA-enhanced MR imaging: which biological markers of the liver function affect the enhancement? J Magn Reson Imaging 30:1042–1046

    Article  PubMed  Google Scholar 

  18. Kötz B, West C, Saleem A et al (2009) Blood flow and Vd(water): both biomarkers required for interpreting the effects of vascular targeting agents on tumor and normal tissue. Mol Cancer Ther 8:303–309

    Article  PubMed  Google Scholar 

  19. Ryeom HK, Kim SH, Kim JY et al (2004) Quantitative evaluation of liver function with MRI Using Gd-EOB-DTPA. Korean J Radiol 5:231–239

    Article  PubMed  Google Scholar 

  20. Nilsson H, Blomqvist L, Douglas L et al (2010) Assessment of liver fraction in primary biliary cirrhosis using Gd-EOB-DTPA-enhanced liver MRI. HPB 12:567–576

    Article  PubMed  Google Scholar 

  21. Tsuda N, Okada M, Murakami T (2010) New proposal for the staging of nonalcoholic steatohepatitis: evaluation of liver fibrosis on Gd-EOB-DTPA-enhanced MRI. Eur J Radiol 73:137–142

    Article  PubMed  Google Scholar 

  22. Motosugi U, Ichikawa T, Tominaga L et al (2009) Delay before the hepatocyte phase of Gd-EOB-DTPA-enhanced MR imaging: is it possible to shorten the examination time? Eur Radiol 19:2623–2629

    Article  PubMed  Google Scholar 

  23. Hashimoto M, Watanabe G (2000) Hepatic parenchymal cell volume and the indocyanine green tolerance test. J Surg Res 92:222–227

    Article  PubMed  CAS  Google Scholar 

  24. Yamada A, Hara T, Li F et al (2011) Quantitative evaluation of liver function with use of gadoxetate disodium–enhanced MR imaging. Radiology 260:727–733

    Article  PubMed  Google Scholar 

  25. Yamada A, Kadoya M, Ueda K et al (2011) Computerized estimation of quantitative segmental liver reserve after transcatheter arterial chemoembolization by use of gadoxetate. In: RSNA. McCormick Place Convention Center, Chicago. Radiological Society of North America

    Google Scholar 

  26. Yamada A, Hara T, Li F et al (2010) Computerized analysis of liver function using gadoxetate disodium–enhanced MR Imaging. In: RSNA. McCormick Place Convention Center, Chicago. Radiological Society of North America

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akira Yamada M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Yamada, A. (2014). Quantitative Evaluation of Liver Function Within MR Imaging. In: El-Baz, A., Saba, L., Suri, J. (eds) Abdomen and Thoracic Imaging. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-8498-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-8498-1_9

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4614-8497-4

  • Online ISBN: 978-1-4614-8498-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics