Skip to main content

Preclinical Visualization of Hypoxia, Proliferation and Glucose Metabolism in Non-small Cell Lung Cancer and Its Metastasis

  • Chapter
  • First Online:
Abdomen and Thoracic Imaging

Abstract

Lung cancer is responsible for more deaths than any other cancers; most cancer-related deaths are due to the development of metastatic diseases rather than the progression of the primary tumors. Tumor hypoxia has been commonly observed in a broad spectrum of primary solid malignancies, which is associated with tumor progression, increased aggressiveness, enhanced metastatic potential, and poor prognosis. Hypoxic cancer cells are resistant to radiotherapy and some forms of chemotherapy. In this chapter, nuclear molecular imaging microenvironment including hypoxia, proliferation, and glucose metabolism in lung cancer metastases was discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Soon YY et al (2009) Duration of chemotherapy for advanced non-small-cell lung cancer: a systematic review and meta-analysis of randomized trials. J Clin Oncol 27(20):3277–3283

    Article  PubMed  Google Scholar 

  2. Hockel M et al (1994) Intratumoral pO2 histography as predictive assay in advanced cancer of the uterine cervix. Adv Exp Med Biol 345:445–450

    Article  PubMed  CAS  Google Scholar 

  3. Brizel DM et al (1996) Tumor oxygenation predicts for the likelihood of distant metastases in human soft tissue sarcoma. Cancer Res 56(5):941–943

    PubMed  CAS  Google Scholar 

  4. Brizel DM et al (1997) Tumor hypoxia adversely affects the prognosis of carcinoma of the head and neck. Int J Radiat Oncol Biol Phys 38(2):285–289

    Article  PubMed  CAS  Google Scholar 

  5. Thomlinson RH, Gray LH (1955) The histological structure of some human lung cancers and the possible implications for radiotherapy. Br J Cancer 9(4):539–549

    Article  PubMed  CAS  Google Scholar 

  6. Hockel M et al (1991) Oxygenation of carcinomas of the uterine cervix: evaluation by computerized O2 tension measurements. Cancer Res 51(22):6098–6102

    PubMed  CAS  Google Scholar 

  7. Koch CJ, Evans SM (2003) Non-invasive PET and SPECT imaging of tissue hypoxia using isotopically labeled 2-nitroimidazoles. Adv Exp Med Biol 510:285–292

    Article  PubMed  CAS  Google Scholar 

  8. Li XF et al (2007) Visualization of hypoxia in microscopic tumors by immunofluorescent microscopy. Cancer Res 67(16):7646–7653

    Article  PubMed  CAS  Google Scholar 

  9. Li XF, O’Donoghue JA (2008) Hypoxia in microscopic tumors. Cancer Lett 264(2):172–180

    Article  PubMed  CAS  Google Scholar 

  10. Li XF et al (2013) A model system for PET radiopharmaceuticals validation: focusing on tumor microenvironment. Int J Med Phys Clin Eng Radiat Oncol 2:19–29

    Article  Google Scholar 

  11. Huang T et al (2012) Tumor microenvironment-dependent 18F-FDG, 18F-fluorothymidine, and 18F-misonidazole uptake: a pilot study in mouse models of human non-small cell lung cancer. J Nucl Med 53(8):1262–1268

    Article  PubMed  CAS  Google Scholar 

  12. Huang T et al (2013) (18)F-misonidazole PET imaging of hypoxia in micrometastases and macroscopic xenografts of human non-small cell lung cancer: a correlation with autoradiography and histological findings. Am J Nucl Med Mol Imaging 3(2):142–153

    PubMed  CAS  Google Scholar 

  13. Airley RE et al (2003) GLUT-1 and CAIX as intrinsic markers of hypoxia in carcinoma of the cervix: relationship to pimonidazole binding. Int J Cancer 104(1):85–91

    Article  PubMed  CAS  Google Scholar 

  14. Airley RE, Mobasheri A (2007) Hypoxic regulation of glucose transport, anaerobic metabolism and angiogenesis in cancer: novel pathways and targets for anticancer therapeutics. Chemotherapy 53(4):233–256

    Article  PubMed  CAS  Google Scholar 

  15. Oliver RJ et al (2004) Prognostic value of facilitative glucose transporter Glut-1 in oral squamous cell carcinomas treated by surgical resection; results of EORTC Translational Research Fund studies. Eur J Cancer 40(4):503–507

    Article  PubMed  CAS  Google Scholar 

  16. Ljungkvist AS et al (2007) Dynamics of tumor hypoxia measured with bioreductive hypoxic cell markers. Radiat Res 167(2):127–145

    Article  PubMed  CAS  Google Scholar 

  17. Bentzen L et al (2000) Feasibility of detecting hypoxia in experimental mouse tumours with 18F-fluorinated tracers and positron emission tomography—a study evaluating [18F]Fluoro-2-deoxy-D-glucose. Acta Oncol 39(5):629–637

    Article  PubMed  CAS  Google Scholar 

  18. Dubois L et al (2004) Evaluation of hypoxia in an experimental rat tumour model by [(18)F]fluoromisonidazole PET and immunohistochemistry. Br J Cancer 91(11):1947–1954

    Article  PubMed  CAS  Google Scholar 

  19. He F et al (2008) Noninvasive molecular imaging of hypoxia in human xenografts: comparing hypoxia-induced gene expression with endogenous and exogenous hypoxia markers. Cancer Res 68(20):8597–8606

    Article  PubMed  CAS  Google Scholar 

  20. Vavere AL, Lewis JS (2007) Cu-ATSM: a radiopharmaceutical for the PET imaging of hypoxia. Dalton Trans 43:4893–4902

    Article  PubMed  Google Scholar 

  21. Tatum JL et al (2006) Hypoxia: importance in tumor biology, noninvasive measurement by imaging, and value of its measurement in the management of cancer therapy. Int J Radiat Biol 82(10):699–757

    Article  PubMed  CAS  Google Scholar 

  22. O’Donoghue JA et al (2005) Assessment of regional tumor hypoxia using 18F-fluoromisonidazole and 64Cu(II)-diacetyl-bis(N4-methylthiosemicarbazone) positron emission tomography: comparative study featuring microPET imaging, Po2 probe measurement, autoradiography, and fluorescent microscopy in the R3327-AT and FaDu rat tumor models. Int J Radiat Oncol Biol Phys 61(5):1493–1502

    Article  PubMed  Google Scholar 

  23. Iyer RV et al (1998) Preclinical assessment of hypoxic marker specificity and sensitivity. Int J Radiat Oncol Biol Phys 42(4):741–745

    Article  PubMed  CAS  Google Scholar 

  24. Zanzonico P et al (2004) Iodine-124-labeled iodo-azomycin-galactoside imaging of tumor hypoxia in mice with serial microPET scanning. Eur J Nucl Med Mol Imaging 31(1):117–128

    Article  PubMed  Google Scholar 

  25. Li XF et al (2010) High 18F-FDG uptake in microscopic peritoneal tumors requires physiologic hypoxia. J Nucl Med 51(4):632–638

    Article  PubMed  Google Scholar 

  26. Bennewith KL, Dedhar S (2011) Targeting hypoxic tumour cells to overcome metastasis. BMC Cancer 11:504

    Article  PubMed  CAS  Google Scholar 

  27. Aguirre-Ghiso JA (2007) Models, mechanisms and clinical evidence for cancer dormancy. Nat Rev Cancer 7(11):834–846

    Article  PubMed  CAS  Google Scholar 

  28. Naumov GN et al (2006) A model of human tumor dormancy: an angiogenic switch from the nonangiogenic phenotype. J Natl Cancer Inst 98(5):316–325

    Article  PubMed  Google Scholar 

  29. Barnhill RL et al (1998) Tumor vascularity, proliferation, and apoptosis in human melanoma micrometastases and macrometastases. Arch Dermatol 134(8):991–994

    Article  PubMed  CAS  Google Scholar 

  30. Aguirre Ghiso JA, Kovalski K, Ossowski L (1999) Tumor dormancy induced by downregulation of urokinase receptor in human carcinoma involves integrin and MAPK signaling. J Cell Biol 147(1):89–104

    Article  PubMed  CAS  Google Scholar 

  31. Udagawa T et al (2002) Persistence of microscopic human cancers in mice: alterations in the angiogenic balance accompanies loss of tumor dormancy. FASEB J 16(11):1361–1370

    Article  PubMed  CAS  Google Scholar 

  32. Durand RE, Raleigh JA (1998) Identification of nonproliferating but viable hypoxic tumor cells in vivo. Cancer Res 58(16):3547–3550

    PubMed  CAS  Google Scholar 

  33. Pugachev A et al (2005) Dependence of FDG uptake on tumor microenvironment. Int J Radiat Oncol Biol Phys 62(2):545–553

    Article  PubMed  CAS  Google Scholar 

  34. Kennedy AS et al (1997) Proliferation and hypoxia in human squamous cell carcinoma of the cervix: first report of combined immunohistochemical assays. Int J Radiat Oncol Biol Phys 37(4):897–905

    Article  PubMed  CAS  Google Scholar 

  35. Pugh CW, Ratcliffe PJ (2003) Regulation of angiogenesis by hypoxia: role of the HIF system. Nat Med 9(6):677–684

    Article  PubMed  CAS  Google Scholar 

  36. Jain RK (2005) Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science 307(5706):58–62

    Article  PubMed  CAS  Google Scholar 

  37. Li XF et al (2006) Visualization of experimental lung and bone metastases in live nude mice by X-ray micro-computed tomography. Technol Cancer Res Treat 5(2):147–155

    PubMed  Google Scholar 

  38. Cameron MD et al (2000) Temporal progression of metastasis in lung: cell survival, dormancy, and location dependence of metastatic inefficiency. Cancer Res 60(9):2541–2546

    PubMed  CAS  Google Scholar 

  39. Maniwa Y et al (1998) Vascular endothelial growth factor increased by pulmonary surgery accelerates the growth of micrometastases in metastatic lung cancer. Chest 114(6):1668–1675

    Article  PubMed  CAS  Google Scholar 

  40. Hiraga T et al (2007) Hypoxia and hypoxia-inducible factor-1 expression enhance osteolytic bone metastases of breast cancer. Cancer Res 67(9):4157–4163

    Article  PubMed  CAS  Google Scholar 

  41. Li XF et al (2002) Benefits of combined radioimmunotherapy and anti-angiogenic therapy in a liver metastasis model of human colon cancer cells. Eur J Nucl Med Mol Imaging 29(12):1669–1674

    Article  PubMed  CAS  Google Scholar 

  42. Riedl CC et al (2008) Imaging hypoxia in orthotopic rat liver tumors with iodine 124-labeled iodoazomycin galactopyranoside PET. Radiology 248(2):561–570

    Article  PubMed  Google Scholar 

  43. Dierckx RA, Van de Wiele C (2008) FDG uptake, a surrogate of tumour hypoxia? Eur J Nucl Med Mol Imaging 35(8):1544–1549

    Article  PubMed  CAS  Google Scholar 

  44. Semenza GL (2003) Targeting HIF-1 for cancer therapy. Nat Rev Cancer 3(10):721–732

    Article  PubMed  CAS  Google Scholar 

  45. Clavo AC, Brown RS, Wahl RL (1995) Fluorodeoxyglucose uptake in human cancer cell lines is increased by hypoxia. J Nucl Med 36(9):1625–1632

    PubMed  CAS  Google Scholar 

  46. Clavo AC, Wahl RL (1996) Effects of hypoxia on the uptake of tritiated thymidine, L-leucine, L-methionine and FDG in cultured cancer cells. J Nucl Med 37(3):502–506

    PubMed  CAS  Google Scholar 

  47. Burgman P et al (2001) Hypoxia-Induced increase in FDG uptake in MCF7 cells. J Nucl Med 42(1):170–175

    PubMed  CAS  Google Scholar 

  48. Ljungkvist AS et al (2005) Hypoxic cell turnover in different solid tumor lines. Int J Radiat Oncol Biol Phys 62(4):1157–1168

    Article  PubMed  Google Scholar 

  49. Nehmeh SA et al (2008) Reproducibility of intratumor distribution of (18)F-fluoromisonidazole in head and neck cancer. Int J Radiat Oncol Biol Phys 70(1):235–242

    Article  PubMed  CAS  Google Scholar 

  50. Graves EE, Maity A, Le QT (2010) The tumor microenvironment in non-small-cell lung cancer. Semin Radiat Oncol 20(3):156–163

    Article  PubMed  Google Scholar 

Download references

Acknowledgment

The studies presented in this article were partially supported by Kentucky Lung Cancer Research Program Award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Feng Li M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Li, XF., Ma, Y. (2014). Preclinical Visualization of Hypoxia, Proliferation and Glucose Metabolism in Non-small Cell Lung Cancer and Its Metastasis. In: El-Baz, A., Saba, L., Suri, J. (eds) Abdomen and Thoracic Imaging. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-8498-1_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-8498-1_20

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4614-8497-4

  • Online ISBN: 978-1-4614-8498-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics