Skip to main content

Meniscal Scaffolds: Options Post Meniscectomy

  • Chapter
  • First Online:
  • 1852 Accesses

Abstract

Surgery for repair or replacement of the menisci is one of the most common procedures in orthopedic surgery, with estimates of more than one million operations each year. In cases involving complex tears or degeneration, the injured portion of the meniscus is usually removed (meniscectomy) or, less commonly, the entire meniscus is replaced using a meniscal allograft. However, meniscectomy does not restore the proper mechanics of the native tissue and can lead to early osteoarthritis (OA). Similarly, allograft replacement has not demonstrated clear evidence of chondral protection, and issues with cost, viral transmission, and technical challenges remain. Thus, researchers have developed a variety of scaffolds aimed at replacement of the meniscus. Several of these have undergone clinical trials and have been implemented in clinical practice. In this chapter, we will discuss the available and developing scaffolds in detail. Following a discussion of the types of materials and fabrication techniques available to create scaffolds, we will examine the results of acellular scaffolds intended to be semipermanent replacements of the meniscus. We will then assess scaffolds intended to promote the regeneration of meniscus-like tissue. Finally, we will elaborate on recent efforts combining cells and scaffolds to create tissue-engineered constructs and will conclude with a discussion of the challenges and future directions for meniscal replacement.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Greis PE, Holmstrom MC, Bardana DD, Burks RT. Meniscal injury: II. Management. J Am Acad Orthop Surg. 2002;10(3):177–87.

    PubMed  Google Scholar 

  2. Rath E, Richmond JC. The menisci: basic science and advances in treatment. Br J Sports Med. 2000;34(4):252–7.

    Article  PubMed  CAS  Google Scholar 

  3. DeHaven KE. Meniscus repair. Am J Sports Med. 1999;27(2):242–50.

    PubMed  CAS  Google Scholar 

  4. Jackson DW, Simon TM. Biology of meniscal allograft. In: Mow VC, Arnoczky SP, Jackson DW, editors. Knee meniscus: basic and clinical foundations. New York: Raven; 1992. p. 141–52.

    Google Scholar 

  5. Ahmed AM. The load-bearing role of the knee meniscus. In: Mow VC, Arnoczky SP, Jackson DW, editors. Knee meniscus: basic and clinical foundations. New York: Raven; 1992. p. 59–73.

    Google Scholar 

  6. Petrosini AV, Sherman OH. A historical perspective on meniscal repair. Clin Sports Med. 1996;15(3):445–53.

    PubMed  CAS  Google Scholar 

  7. Cole BJ, Carter TR, Rodeo SA. Allograft meniscal transplantation: background, techniques, and results. Instr Course Lect. 2003;52:383–96.

    PubMed  Google Scholar 

  8. Elattar M, Dhollander A, Verdonk R, Almqvist KF, Verdonk P. Twenty-six years of meniscal allograft transplantation: is it still experimental? A meta-analysis of 44 trials. Knee Surg Sports Traumatol Arthrosc. 2011;19(2):147–57.

    Article  PubMed  Google Scholar 

  9. Packer JD, Rodeo SA. Meniscal allograft transplantation. Clin Sports Med. 2009;28(2):259–83. viii.

    Article  PubMed  Google Scholar 

  10. Verdonk P, Depaepe Y, Desmyter S, De Muynck M, Almqvist KF, Verstraete K, et al. Normal and transplanted lateral knee menisci: evaluation of extrusion using magnetic resonance imaging and ultrasound. Knee Surg Sports Traumatol Arthrosc. 2004;12(5):411–9.

    Article  PubMed  Google Scholar 

  11. Kelly BT, Potter HG, Deng XH, Pearle AD, Turner AS, Warren RF, et al. Meniscal allograft transplantation in the sheep knee: evaluation of chondroprotective effects. Am J Sports Med. 2006;34(9):1464–77.

    Article  PubMed  Google Scholar 

  12. Makris EA, Hadidi P, Athanasiou KA. The knee meniscus: structure-function, pathophysiology, current repair techniques, and prospects for regeneration. Biomaterials. 2011;32(30):7411–31.

    Article  PubMed  CAS  Google Scholar 

  13. Ahmed AM, Burke DL. In-vitro measurement of static pressure distribution in synovial joints—Part I: Tibial surface of the knee. J Biomech Eng. 1983;105(3):216–25.

    Article  PubMed  CAS  Google Scholar 

  14. Bedi A, Kelly NH, Baad M, Fox AJ, Brophy RH, Warren RF, et al. Dynamic contact mechanics of the medial meniscus as a function of radial tear, repair, and partial meniscectomy. J Bone Joint Surg Am. 2010;92(6):1398–408.

    Article  PubMed  Google Scholar 

  15. Fukubayashi T, Kurosawa H. The contact area and pressure distribution pattern of the knee. A study of normal and osteoarthrotic knee joints. Acta Orthop Scand. 1980;51(6):871–9.

    PubMed  CAS  Google Scholar 

  16. Hunter SA, Rapoport HS, Connolly JM, Alferiev I, Fulmer J, Murti BH, et al. Biomechanical and biologic effects of meniscus stabilization using triglycidyl amine. J Biomed Mater Res A. 2010;93(1):235–42.

    PubMed  Google Scholar 

  17. Bursac P, Arnoczky S, York A. Dynamic compressive behavior of human meniscus correlates with its extra-cellular matrix composition. Biorheology. 2009;46(3):227–37.

    PubMed  CAS  Google Scholar 

  18. Bursac P, York A, Kuznia P, Brown LM, Arnoczky SP. Influence of donor age on the biomechanical and biochemical properties of human meniscal allografts. Am J Sports Med. 2009;37(5):884–9.

    Article  PubMed  Google Scholar 

  19. Proctor CS, Schmidt MB, Whipple RR, Kelly MA, Mow VC. Material properties of the normal medial bovine meniscus. J Orthop Res. 1989;7(6):771–82.

    Article  PubMed  CAS  Google Scholar 

  20. Adams ME, Hukins DWL. The extracellular matrix of the meniscus. In: Mow VC, Arnoczky SP, Jackson DW, editors. Knee meniscus: basic and clinical foundations. New York: Raven; 1992. p. 15–28.

    Google Scholar 

  21. McDevitt CA, Webber RJ. The ultrastructure and biochemistry of meniscal cartilage. Clin Orthop Relat Res. 1990;252:8–18.

    PubMed  Google Scholar 

  22. Petersen W, Tillmann B. Collagenous fibril texture of the human knee joint menisci. Anat Embryol (Berl). 1998;197(4):317–24.

    Article  CAS  Google Scholar 

  23. Aufderheide AC, Athanasiou KA. Assessment of a bovine co-culture, scaffold-free method for growing meniscus-shaped constructs. Tissue Eng. 2007;13(9):2195–205.

    Article  PubMed  CAS  Google Scholar 

  24. Gunja NJ, Uthamanthil RK, Athanasiou KA. Effects of TGF-beta1 and hydrostatic pressure on meniscus cell-seeded scaffolds. Biomaterials. 2009;30(4):565–73.

    Article  PubMed  CAS  Google Scholar 

  25. Heijkants RG, van Calck RV, De Groot JH, Pennings AJ, Schouten AJ, van Tienen TG, et al. Design, synthesis and properties of a degradable polyurethane scaffold for meniscus regeneration. J Mater Sci Mater Med. 2004;15(4):423–7.

    Article  PubMed  CAS  Google Scholar 

  26. Ibarra C, Koski JA, Warren RF. Tissue engineering meniscus: cells and matrix. Orthop Clin North Am. 2000;31(3):411–8.

    Article  PubMed  CAS  Google Scholar 

  27. Klompmaker J, Veth RP, Jansen HW, Nielsen HK, de Groot JH, Pennings AJ, et al. Meniscal repair by fibrocartilage in the dog: characterization of the repair tissue and the role of vascularity. Biomaterials. 1996;17(17):1685–91.

    Article  PubMed  CAS  Google Scholar 

  28. Kobayashi M, Chang YS, Oka M. A two year in vivo study of polyvinyl alcohol-hydrogel (PVA-H) artificial meniscus. Biomaterials. 2005;26(16):3243–8.

    Article  PubMed  CAS  Google Scholar 

  29. Silva MM, Cyster LA, Barry JJ, Yang XB, Oreffo RO, Grant DM, et al. The effect of anisotropic architecture on cell and tissue infiltration into tissue engineering scaffolds. Biomaterials. 2006;27(35):5909–17.

    Article  PubMed  CAS  Google Scholar 

  30. Sommerlath KG, Gillquist J. The effect of anterior cruciate ligament resection and immediate or delayed implantation of a meniscus prosthesis on knee joint biomechanics and cartilage. An experimental study in rabbits. Clin Orthop Relat Res. 1993;289:267–75.

    PubMed  Google Scholar 

  31. van Tienen TG, Heijkants RG, Buma P, de Groot JH, Pennings AJ, Veth RP. Tissue ingrowth and degradation of two biodegradable porous polymers with different porosities and pore sizes. Biomaterials. 2002;23(8):1731–8.

    Article  PubMed  Google Scholar 

  32. Veth RP, Jansen HW, Leenslag JW, Pennings AJ, Hartel RM, Nielsen HK. Experimental meniscal lesions reconstructed with a carbon fiber-polyurethane-poly(L-lactide) graft. Clin Orthop Relat Res. 1986;202:286–93.

    PubMed  CAS  Google Scholar 

  33. Cook JL, Fox DB, Malaviya P, Tomlinson JL, Kuroki K, Cook CR, et al. Long-term outcome for large meniscal defects treated with small intestinal submucosa in a dog model. Am J Sports Med. 2006;34(1):32–42.

    Article  PubMed  Google Scholar 

  34. Bruns J, Kahrs J, Kampen J, Behrens P, Plitz W. Autologous perichondral tissue for meniscal replacement. J Bone Joint Surg Br. 1998;80(5):918–23.

    Article  PubMed  CAS  Google Scholar 

  35. Cook JL, Fox DB, Kuroki K, Jayo M, De Deyne PG. In vitro and in vivo comparison of five biomaterials used for orthopedic soft tissue augmentation. Am J Vet Res. 2008;69(1):148–56.

    Article  PubMed  Google Scholar 

  36. Crapo PM, Gilbert TW, Badylak SF. An overview of tissue and whole organ decellularization processes. Biomaterials. 2011;32(12):3233–43.

    Article  PubMed  CAS  Google Scholar 

  37. Sandmann GH, Eichhorn S, Vogt S, Adamczyk C, Aryee S, Hoberg M, et al. Generation and characterization of a human acellular meniscus scaffold for tissue engineering. J Biomed Mater Res A. 2009;91(2):567–74.

    PubMed  CAS  Google Scholar 

  38. Ballyns JJ, Bonassar LJ. Dynamic compressive loading of image-guided tissue engineered meniscal constructs. J Biomech. 2011;44(3):509–16.

    Article  PubMed  Google Scholar 

  39. Chen JP, Cheng TH. Preparation and evaluation of thermo-reversible copolymer hydrogels containing chitosan and hyaluronic acid as injectable cell carriers. Polymer. 2009;50(1):107–16.

    Article  CAS  Google Scholar 

  40. Stone KR, Rodkey WG, Webber R, McKinney L, Steadman JR. Meniscal regeneration with copolymeric collagen scaffolds. In vitro and in vivo studies evaluated clinically, histologically, and biochemically. Am J Sports Med. 1992;20(2):104–11.

    Article  PubMed  CAS  Google Scholar 

  41. Tan GK, Dinnes DL, Butler LN, Cooper-White JJ. Interactions between meniscal cells and a self assembled biomimetic surface composed of hyaluronic acid, chitosan and meniscal extracellular matrix molecules. Biomaterials. 2010;31(23):6104–18.

    Article  PubMed  CAS  Google Scholar 

  42. Ballyns JJ, Wright TM, Bonassar LJ. Effect of media mixing on ECM assembly and mechanical properties of anatomically-shaped tissue engineered meniscus. Biomaterials. 2011;31(26):6756–63.

    Article  Google Scholar 

  43. Bodin A, Concaro S, Brittberg M, Gatenholm P. Bacterial cellulose as a potential meniscus implant. J Tissue Eng Regen Med. 2007;1(5):406–8.

    Article  PubMed  CAS  Google Scholar 

  44. Chen JP, Cheng TH. Thermo-responsive chitosan-graft-poly(N-isopropylacrylamide) injectable hydrogel for cultivation of chondrocytes and meniscus cells. Macromol Biosci. 2006;6(12):1026–39.

    Article  PubMed  CAS  Google Scholar 

  45. Mandal BB, Park SH, Gil ES, Kaplan DL. Multilayered silk scaffolds for meniscus tissue engineering. Biomaterials. 2012;32(2):639–51.

    Article  Google Scholar 

  46. Wilson CG, Nishimuta JF, Levenston ME. Chondrocytes and meniscal fibrochondrocytes differentially process aggrecan during de novo extracellular matrix assembly. Tissue Eng Part A. 2009;15(7):1513–22.

    Article  PubMed  CAS  Google Scholar 

  47. Baker BM, Shah RP, Silverstein AM, Esterhai JL, Burdick JA, Mauck RL. Sacrificial nanofibrous composites provide instruction without impediment and enable functional tissue formation. Proc Natl Acad Sci U S A. 2012;109(35):14176–81.

    Article  PubMed  CAS  Google Scholar 

  48. Holloway JL, Lowman AM, Palmese GR. Mechanical evaluation of poly(vinyl alcohol)-based fibrous composites as biomaterials for meniscal tissue replacement. Acta Biomater. 2010;6(12):4716–24.

    Article  PubMed  CAS  Google Scholar 

  49. Baker BM, Gee AO, Sheth NP, Huffman GR, Sennett BJ, Schaer TP, et al. Meniscus tissue engineering on the nanoscale: from basic principles to clinical application. J Knee Surg. 2009;22(1):45–59.

    Article  PubMed  Google Scholar 

  50. FDA. FDA determines knee device should not have been cleared for marketing [Internet]. 2010 [updated 2013 Apr 19]. Available from: http://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/2010/ucm229384.htm.

  51. Monllau JC, Gelber PE, Abat F, Pelfort X, Abad R, Hinarejos P, et al. Outcome after partial medial meniscus substitution with the collagen meniscal implant at a minimum of 10 years’ follow-up. Arthroscopy. 2011;27(7):933–43.

    Article  PubMed  Google Scholar 

  52. Rodkey WG, Steadman JR, Li ST. A clinical study of collagen meniscus implants to restore the injured meniscus. Clin Orthop Relat Res 1999;367 Suppl:S281–92.

    Google Scholar 

  53. Rodkey WG, DeHaven KE, Montgomery III WH, Baker Jr CL, Beck Jr CL, Hormel SE, et al. Comparison of the collagen meniscus implant with partial meniscectomy. A prospective randomized trial. J Bone Joint Surg Am. 2008;90(7):1413–26.

    Article  PubMed  Google Scholar 

  54. Steadman JR, Rodkey WG. Tissue-engineered collagen meniscus implants: 5- to 6-year feasibility study results. Arthroscopy. 2005;21(5):515–25.

    Article  PubMed  Google Scholar 

  55. Maher SA, Rodeo SA, Doty SB, Brophy R, Potter H, Foo LF, et al. Evaluation of a porous polyurethane scaffold in a partial meniscal defect ovine model. Arthroscopy. 2010;26(11):1510–9.

    Article  PubMed  Google Scholar 

  56. Tienen TG, Heijkants RG, de Groot JH, Pennings AJ, Schouten AJ, Veth RP, et al. Replacement of the knee meniscus by a porous polymer implant: a study in dogs. Am J Sports Med. 2006;34(1):64–71.

    Article  PubMed  Google Scholar 

  57. Welsing RT, van Tienen TG, Ramrattan N, Heijkants R, Schouten AJ, Veth RP, et al. Effect on tissue differentiation and articular cartilage degradation of a polymer meniscus implant: a 2-year follow-up study in dogs. Am J Sports Med. 2008;36(10):1978–89.

    Article  PubMed  Google Scholar 

  58. Verdonk P, Beaufils P, Bellemans J, Djian P, Heinrichs EL, Huysse W, et al. Successful treatment of painful irreparable partial meniscal defects with a polyurethane scaffold: two-year safety and clinical outcomes. Am J Sports Med. 2012;40(4):844–53.

    Article  PubMed  Google Scholar 

  59. Verdonk R, Verdonk P, Huysse W, Forsyth R, Heinrichs EL. Tissue ingrowth after implantation of a novel, biodegradable polyurethane scaffold for treatment of partial meniscal lesions. Am J Sports Med. 2011;39(4):774–82.

    Article  PubMed  Google Scholar 

  60. De Coninck T, Huysse W, Willemot L, Verdonk R, Verstraete K, Verdonk P. Two-year follow-up study on clinical and radiological outcomes of polyurethane meniscal scaffolds. Am J Sports Med. 2013;41(1):64–72.

    Article  PubMed  Google Scholar 

  61. Kelly BT, Robertson W, Potter HG, Deng XH, Turner AS, Lyman S, et al. Hydrogel meniscal replacement in the sheep knee: preliminary evaluation of chondroprotective effects. Am J Sports Med. 2007;35(1):43–52.

    Article  PubMed  Google Scholar 

  62. Zur G, Linder-Ganz E, Elsner JJ, Shani J, Brenner O, Agar G, et al. Chondroprotective effects of a polycarbonate-urethane meniscal implant: histopathological results in a sheep model. Knee Surg Sports Traumatol Arthrosc. 2011;19(2):255–63.

    Article  PubMed  Google Scholar 

  63. Balint E, Gatt Jr CJ, Dunn MG. Design and mechanical evaluation of a novel fiber-reinforced scaffold for meniscus replacement. J Biomed Mater Res A. 2012;100(1):195–202.

    PubMed  Google Scholar 

  64. Barnes CP, Sell SA, Boland ED, Simpson DG, Bowlin GL. Nanofiber technology: designing the next generation of tissue engineering scaffolds. Adv Drug Deliv Rev. 2007;59(14):1413–33.

    Article  PubMed  CAS  Google Scholar 

  65. Li D, Xia YN. Electrospinning of nanofibers: reinventing the wheel? Adv Mater. 2004;16(14):1151–70.

    Article  CAS  Google Scholar 

  66. Li WJ, Mauck RL, Tuan RS. Electrospun nanofibrous scaffolds: production, characterization, and applications for tissue engineering and drug delivery. J Biomed Nanotechnol. 2005;1(3):259–75.

    Article  Google Scholar 

  67. Mauck RL, Baker BM, Nerurkar NL, Burdick JA, Li WJ, Tuan RS, et al. Engineering on the straight and narrow: the mechanics of nanofibrous assemblies for fiber-reinforced tissue regeneration. Tissue Eng Part B Rev. 2009;15(2):171–93.

    Article  PubMed  CAS  Google Scholar 

  68. Pham QP, Sharma U, Mikos AG. Electrospinning of polymeric nanofibers for tissue engineering applications: a review. Tissue Eng. 2006;12(5):1197–211.

    Article  PubMed  CAS  Google Scholar 

  69. Stella JA, D’Amore A, Wagner WR, Sacks MS. On the biomechanical function of scaffolds for engineering load-bearing soft tissues. Acta Biomater. 2010;6(7):2365–81.

    Article  PubMed  Google Scholar 

  70. Baker BM, Mauck RL. The effect of nanofiber alignment on the maturation of engineered meniscus constructs. Biomaterials. 2007;28(11):1967–77.

    Article  PubMed  CAS  Google Scholar 

  71. Li WJ, Mauck RL, Cooper JA, Yuan X, Tuan RS. Engineering controllable anisotropy in electrospun biodegradable nanofibrous scaffolds for musculoskeletal tissue engineering. J Biomech. 2007;40(8):1686–93.

    Article  PubMed  Google Scholar 

  72. Fisher MB, Henning EA, Soegaard N, Esterhai JL, Mauck RL. Organized nanofibrous scaffolds that mimic the macroscopic and microscopic architecture of the knee meniscus. Acta Biomater. 2013;9(1):4496–504.

    Article  PubMed  CAS  Google Scholar 

  73. Arnoczky SP, Warren RF, Spivak JM. Meniscal repair using an exogenous fibrin clot. An experimental study in dogs. J Bone Joint Surg Am. 1988;70(8):1209–17.

    PubMed  CAS  Google Scholar 

  74. Hashimoto J, Kurosaka M, Yoshiya S, Hirohata K. Meniscal repair using fibrin sealant and endothelial cell growth factor. An experimental study in dogs. Am J Sports Med. 1992;20(5):537–41.

    Article  PubMed  CAS  Google Scholar 

  75. Cook JL, Tomlinson JL, Kreeger JM, Cook CR. Induction of meniscal regeneration in dogs using a novel biomaterial. Am J Sports Med. 1999;27(5):658–65.

    PubMed  CAS  Google Scholar 

  76. Kon E, Filardo G, Tschon M, Fini M, Giavaresi G, Marchesini Reggiani L, et al. Tissue engineering for total meniscal substitution: animal study in sheep model—results at 12 months. Tissue Eng Part A. 2012;18(15–16):1573–82.

    Article  PubMed  CAS  Google Scholar 

  77. Martinek V, Ueblacker P, Braun K, Nitschke S, Mannhardt R, Specht K, et al. Second generation of meniscus transplantation: in-vivo study with tissue engineered meniscus replacement. Arch Orthop Trauma Surg. 2006;126(4):228–34.

    Article  PubMed  CAS  Google Scholar 

  78. Ibarra C, Jannetta C, Vacanti CA, Cao Y, Kim TH, Upton J, et al. Tissue engineered meniscus: a potential new alternative to allogeneic meniscus transplantation. Transplant Proc. 1997;29(1–2):986–8.

    Article  PubMed  CAS  Google Scholar 

  79. Hoben GM, Hu JC, James RA, Athanasiou KA. Self-assembly of fibrochondrocytes and chondrocytes for tissue engineering of the knee meniscus. Tissue Eng. 2007;13(5):939–46.

    Article  PubMed  CAS  Google Scholar 

  80. Huey DJ, Athanasiou KA. Maturational growth of self-assembled, functional menisci as a result of TGF-beta1 and enzymatic chondroitinase-ABC stimulation. Biomaterials. 2011;32(8):2052–8.

    Article  PubMed  CAS  Google Scholar 

  81. Hoenig E, Winkler T, Mielke G, Paetzold H, Schuettler D, Goepfert C, et al. High amplitude direct compressive strain enhances mechanical properties of scaffold-free tissue-engineered cartilage. Tissue Eng Part A. 2011;17(9–10):1401–11.

    Article  PubMed  CAS  Google Scholar 

  82. Mueller SM, Shortkroff S, Schneider TO, Breinan HA, Yannas IV, Spector M. Meniscus cells seeded in type I and type II collagen-GAG matrices in vitro. Biomaterials. 1999;20(8):701–9.

    Article  PubMed  CAS  Google Scholar 

  83. Chiari C, Koller U, Kapeller B, Dorotka R, Bindreiter U, Nehrer S. Different behavior of meniscal cells in collagen II/I, III and Hyaff-11 scaffolds in vitro. Tissue Eng Part A. 2008;14(8):1295–304.

    Article  PubMed  CAS  Google Scholar 

  84. Ballyns JJ, Gleghorn JP, Niebrzydowski V, Rawlinson JJ, Potter HG, Maher SA, et al. Image-guided tissue engineering of anatomically shaped implants via MRI and micro-CT using injection molding. Tissue Eng Part A. 2008;14(7):1195–202.

    Article  PubMed  Google Scholar 

  85. Baker BM, Nathan AS, Huffman GR, Mauck RL. Tissue engineering with meniscus cells derived from surgical debris. Osteoarthritis Cartilage. 2009;17(3):336–45.

    Article  PubMed  CAS  Google Scholar 

  86. Baker BM, Gee AO, Metter RB, Nathan AS, Marklein RA, Burdick JA, et al. The potential to improve cell infiltration in composite fiber-aligned electrospun scaffolds by the selective removal of sacrificial fibers. Biomaterials. 2008;29(15):2348–58.

    Article  PubMed  CAS  Google Scholar 

  87. Ionescu LC, Lee GC, Garcia GH, Zachry TL, Shah RP, Sennett BJ, et al. Maturation state-dependent alterations in meniscus integration: implications for scaffold design and tissue engineering. Tissue Eng Part A. 2011;17(1–2):193–204.

    Article  PubMed  CAS  Google Scholar 

  88. Ionescu LC, Lee GC, Huang KL, Mauck RL. Growth factor supplementation improves native and engineered meniscus repair in vitro. Acta Biomater. 2012;8(10):3687–94.

    Article  PubMed  CAS  Google Scholar 

  89. Fairbank TJ. Knee joint changes after meniscectomy. J Bone Joint Surg Br. 1948;30B(4):664–70.

    PubMed  CAS  Google Scholar 

  90. Petty CA, Lubowitz JH. Does arthroscopic partial meniscectomy result in knee osteoarthritis? A systematic review with a minimum of 8 years’ follow-up. Arthroscopy. 2011;27(3):419–24.

    Article  PubMed  Google Scholar 

  91. Zaffagnini S, Marcheggiani Muccioli GM, Bulgheroni P, Bulgheroni E, Grassi A, Bonanzinga T, et al. Arthroscopic collagen meniscus implantation for partial lateral meniscal defects: a 2-year minimum follow-up study. Am J Sports Med. 2012;40(10):2281–8.

    Article  PubMed  Google Scholar 

  92. Stone KR, Steadman JR, Rodkey WG, Li ST. Regeneration of meniscal cartilage with use of a collagen scaffold. Analysis of preliminary data. J Bone Joint Surg Am. 1997;79(12):1770–7.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge support from the National Institutes of Health (R01EB02425, R01AR056624), the Veterans’ Administration (I01RX000174), Musculoskeletal Transplant Foundation (Junior Investigator Grant), the Orthopaedic Research and Education Foundation, the Penn Center for Musculoskeletal Disorders (P30AR050950), and the Penn Institute for Regenerative Medicine.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew B. Fisher Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Fisher, M.B., Belkin, N.S., Mauck, R.L. (2014). Meniscal Scaffolds: Options Post Meniscectomy. In: Kelly, IV, J. (eds) Meniscal Injuries. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8486-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-8486-8_6

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-8485-1

  • Online ISBN: 978-1-4614-8486-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics