Skip to main content

Virtual Tawaf: A Velocity-Space-Based Solution for Simulating Heterogeneous Behavior in Dense Crowds

  • Chapter
  • First Online:
Book cover Modeling, Simulation and Visual Analysis of Crowds

Part of the book series: The International Series in Video Computing ((VICO,volume 11))

Abstract

We present a system to simulate the movement of individual agents in large-scale crowds performing the Tawaf. The Tawaf serves as a unique test case; the large crowd consists of a heterogeneous set of pilgrims, varying in both physical capacity and activity. Furthermore, the density of the crowd reaches extremely high levels (up to 8 people/m2). This extreme density can place impractical constraints on simulation parameters. We use a velocity-space-based pedestrian model which exhibits consistent results even under extreme density: reciprocal velocity obstacles (RVO). Furthermore, we extend RVO to include priority and right of way—agents respond to potential collisions asymmetrically depending on context; one agent may yield, to varying degrees, to another. Our system uses a finite state machine to specify the behavior of the agents at each time step, to model the varied behaviors seen during the Tawaf. The finite-state machine, used in conjunction with RVO, generates collision-free trajectories for tens of thousands of agents in the performance of the Tawaf. The overall system can model agents with varying age, gender and behaviors, supporting the heterogeneity observed in the performance of the Tawaf, even at high densities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The velocity term is the inspiration for the name. The original SF model considered only agent positions [11].

  2. 2.

    While the formula doesn’t preclude using an implicit integration scheme, the common practice has been to use a low-order explicit integrator such as forward Euler.

  3. 3.

    If the agent were perfectly capable of maintaining its position, it would travel no distance at all.

References

  1. Al-Haboubi, M., Selim, S.: A design to minimize congestion around the ka’aba. Comput. Ind. Eng. 32(2), 419–428 (1997)

    Article  Google Scholar 

  2. Algadhi, S., Mahmassani, H.: Modelling crowd behavior and movement: application to makkah pilgrimage. Transp. Traffic Theory 1990, 59–78 (1990)

    Google Scholar 

  3. Bandini, S., Federici, M., Manzoni, S., Vizzari, G.: Towards a methodology for situated cellular agent based crowd simulations. Engineering societies in the agents world VI, pp. 203–220. Springer, Berlin/Heidelberg (2006)

    Google Scholar 

  4. Chraibi, M., Seyfried, A., Schadschneider, A.: Generalized centrifugal-force model for pedestrian dynamics. Phys. Rev. E 82(4), 046,111 (2010)

    Google Scholar 

  5. Crystals project. http://www.csai.disco.unimib.it/CSAI/CRYSTALS/

  6. Curtis, S., Snape, J., Manocha, D.: Way portals: Efficient multi-agent navigation with line-segment goals. In: Proceedings of the Symposium on Interactive 3D Graphics and Games (I3D), Costa Mesa, CA, USA (2012)

    Google Scholar 

  7. Durupinar, F., Pelechano, N., Allbeck, J., Gudukbay, U., Badler, N.: How the ocean personality model on the perception of crowds. Comput. Graph. Appl. IEEE 31(3), 22–31 (2010)

    Google Scholar 

  8. Fiorini, P., Shiller, Z.: Motion planning in dynamic environments using velocity obstacles. Int. J. Robot. Res. 17(7), 760–762 (1998)

    Article  Google Scholar 

  9. Funge, J., Tu, X., Terzopoulos, D.: Cognitive modeling: knowledge, reasoning and planning for intelligent characters. In: SIGGRAPH, pp. 29–38. ACM, Los Angeles, CA, USA (1999)

    Google Scholar 

  10. Guy, S.J., Chhugani, J., Curtis, S., Lin, M.C., Dubey, P., Manocha, D.: Pledestrians: A least-effort approach to crowd simulation. In: Symposium on Computer Animation. ACM, Madrid, Spain (2010)

    Google Scholar 

  11. Helbing, D., Molnar, P.: Social force model for pedestrian dynamics. Phys. Rev. E 51(5), 4282–4286 (1995)

    Article  Google Scholar 

  12. Johansson, A., Helbing, D., Al-Abideen, H., Al-Bosta, S.: From crowd dynamics to crowd safety: A video-based analysis. Advances in Complex Systems 11(04), 497–527 (2008)

    Article  MATH  Google Scholar 

  13. Ju, E., Choi, M.G., Park, M., Lee, J., Lee, K.H., Takahashi, S.: Morphable crowds. ACM Trans. Graph. 29(6), 140 (2010)

    Google Scholar 

  14. Koshak, N., Fouda, A.: Analyzing pedestrian movement in mataf using gps and gis to support space redesign. In: The 9th International Conference on Design and Decision Support Systems in Architecture and Urban Planning, The Netherlands/Holland (2008)

    Google Scholar 

  15. Lee, K.H., Choi, M.G., Hong, Q., Lee, J.: Group behavior from video: a data-driven approach to crowd simulation. In: Symposium on Computer Animation, San Diego, CA, USA pp. 109–118 (2007)

    Google Scholar 

  16. Mehran, R., Oyama, A., Shah, M.: Abnormal crowd behavior detection using social force model. CVPR, Miami Beach, FL, USA (2009)

    Google Scholar 

  17. Moussaïd, M., Perozo, N., Garnier, S., Helbing, D., Theraulaz, G.: The walking behaviour of pedestrian social groups and its impact on crowd dynamics. PLoS ONE 5(4), e10,047 (2010). doi:10.1371/journal.pone.0010047. http://dx.doi.org/10.1371%2Fjournal.pone.0010047

  18. Mulyana, W., Gunawan, T.: Hajj crowd simulation based on intelligent agent. In: 2010 International Conference on Computer and Communication Engineering (ICCCE), pp. 1–4. IEEE, Kuala Lumpur, Malyasia (2010)

    Google Scholar 

  19. Narain, R., Golas, A., Curtis, S., Lin, M.C.: Aggregate dynamics for dense crowd simulation. ACM Trans. Graph. 28, 122:1–122:8 (2009). doi:http://doi.acm.org/10.1145/1618452.1618468. http://doi.acm.org/10.1145/1618452.1618468

    Google Scholar 

  20. Ondřej, J., Pettré, J., Olivier, A.H., Donikian, S.: A synthetic-vision based steering approach for crowd simulation. In: Proceedings of the SIGGRAPH, Los Angeles, CA pp. 123:1–123:9 (2010)

    Google Scholar 

  21. Patil, S., van den Berg, J., Curtis, S., Lin, M., Manocha, D.: Directing crowd simulations using navigation fields. IEEE TVCG, pp. 244–254 (2010)

    Google Scholar 

  22. Pelechano, N., Allbeck, J., Badler, N.: Controlling individual agents in high-density crowd simulation. In: SCA07, San Diego, CA, USA (2007)

    Google Scholar 

  23. Reynolds, C.: Flocks, herds and schools: A distributed behavioral model. In: SIGGRAPH, Anaheim, CA, USA (1987)

    Google Scholar 

  24. Sarmady, S., Haron, F., Talib, A.: A cellular automata model for circular movements of pedestrians during tawaf. Simul. Model. Pract. Theory 19(3), 969–985 (2010)

    Article  Google Scholar 

  25. Schadschneider, A.: Cellular automaton approach to pedestrian dynamics – theory. Pedestr. Evacuation Dyn. (2001)

    Google Scholar 

  26. Treuille, A., Cooper, S., Popović, Z.: Continuum crowds. In: ACM SIGGRAPH 2006, pp. 1160–1168. ACM, Boston, MA, USA (2006)

    Google Scholar 

  27. Ulicny, B., Thalmann, D.: Towards interactive real-time crowd behavior simulation. In: Computer Graphics Forum, vol. 21, pp. 767–775. Wiley Online Library (2002)

    Google Scholar 

  28. van den Berg, J., Guy, S.J., Lin, M., Manocha, D.: Reciprocal n-body collision avoidance. In: International Symposium on Robotics Research, Lucerne, Switzerland (2009)

    Google Scholar 

  29. Yeh, H., Curtis, S., Patil, S., van den Berg, J., Manocha, D., Lin, M.: Composite agents. Proceedings of SCA, Dublin, Ireland pp. 39–47 (2008)

    Google Scholar 

  30. Yersin, B., Maim, J., Pettré, J., Thalmann, D.: Crowd patches: populating large-scale virtual environments for real-time applications. In: I3D09, pp. 207–214. ACM, Boston, MA, USA (2009)

    Google Scholar 

  31. Yu, Q., Terzopoulos, D.: A decision network framework for the behavioral animation of virtual humans. In: Symposium on Computer Animation, San Diego, CA, USA pp. 119–128 (2007)

    Google Scholar 

  32. Zafar, B.: Analysis of the Mataf – Ramadan 1432 AH. Tech. rep., Hajj Research Institute, Umm al-Qura University, Saudi Arabia (2011)

    Google Scholar 

  33. Zainuddin, Z., Thinakaran, K., Abu-Sulyman, I.: Simulating the circumambulation of the ka’aba using simwalk. Eur. J. Sci. Res. 38(3), 454–464 (2009)

    Google Scholar 

Download references

Acknowledgements

This research is supported in part by ARO Contract W911NF-10-1-0506, NSF awards 0917040, 0904990 and 1000579.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sean Curtis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Curtis, S., Guy, S.J., Zafar, B., Manocha, D. (2013). Virtual Tawaf: A Velocity-Space-Based Solution for Simulating Heterogeneous Behavior in Dense Crowds. In: Ali, S., Nishino, K., Manocha, D., Shah, M. (eds) Modeling, Simulation and Visual Analysis of Crowds. The International Series in Video Computing, vol 11. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8483-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-8483-7_8

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-8482-0

  • Online ISBN: 978-1-4614-8483-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics