Skip to main content

Inferring Leadership from Group Dynamics Using Markov Chain Monte Carlo Methods

  • Chapter
  • First Online:
  • 2263 Accesses

Part of the book series: The International Series in Video Computing ((VICO,volume 11))

Abstract

This chapter presents a novel framework for identifying and tracking dominant agents in groups. The proposed approach relies on a causality detection scheme that is capable of ranking agents with respect to their contribution in recognizing the system’s collective behavior based exclusively on the agents’ observed trajectories. Further, the reasoning paradigm is made robust to multiple emissions and clutter by employing a class of recently introduced Markov chain Monte Carlo-based group tracking methods. Examples are provided that demonstrate the strong potential of the proposed scheme in identifying actual leaders in swarms of interacting agents and moving crowds.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Albert, R., Barabsi, A.-L.: Statistical mechanics of complex networks. Rev. Mod. Phys. 74(1), 47–97 (2002)

    Article  MATH  Google Scholar 

  2. Ali, S., Shah, M.: Floor fields for tracking in high density crowd scenes. In: Computer Vision – ECCV 2008. Volume 5303 of Lecture Notes in Computer Science, pp. 1–14. Springer, Berlin/Heidelberg (2008)

    Google Scholar 

  3. Angelova, D., Mihaylova, L.: Extended object tracking using Monte Carlo methods. IEEE Trans. Signal Process. 56(2), 825–832 (2008)

    Article  MathSciNet  Google Scholar 

  4. Arulampalam, M., Maskell, S., Gordon, N., Clapp, T.: A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking. IEEE Trans. Signal Process. 50(2), 174–188 (2002)

    Article  Google Scholar 

  5. Berzuini, C., Nicola, G., Gilks, W.R., Larizza, C.: Dynamic conditional independence models and Markov chain Monte Carlo methods. J. Am. Stat. Assoc. 92(440), 1403–1412 (1997)

    Article  Google Scholar 

  6. Bhaskar, H., Mihaylova, L.: Combined data association and evolving population particle filter for tracking of multiple articulated targets. EURASIP J. Image Video Process. 2011, article ID 642532 (2011)

    Google Scholar 

  7. Bhaskar, H., Mihaylova, L., Maskell, S.: Population-based particle filters. In: Proceedings of the from the Institution of Engineering and Technology (IET) Seminar on Target Tracking and Data Fusion: Algorithms and Applications, Birmingham, pp. 31–38 (2008)

    Google Scholar 

  8. Cappé, O., Guillin, A., Marin, J.-M., Robert, C.P., Roberty, C.P.: Population Monte Carlo. J. Comput. Gr. Stat. 13, 907–929 (2004)

    Article  Google Scholar 

  9. Carmi, A., Septier, F., Godsill, S.J.: The Gaussian mixture MCMC particle algorithm for dynamic cluster tracking. In: Proceedings of the 12th International Conference on Information Fusion, pp. 1179–1186. Seattle, WA (2009)

    Google Scholar 

  10. Cheng, J., Greiner, R., Kelly, J., Bell, D., Liu, W.: Learning Bayesian network from data: an information-theory based approach. Artif. Intell. 137(1–2), 43–90 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  11. Dorogovtsev, S.N., Mendes, J.F.F.: Evolution of networks. Adv. Phys. 51, 1079–1187 (2002)

    Article  Google Scholar 

  12. Geffner, H.: Default Reasoning: Causal and Conditional Theories. MIT, Cambridge (1992)

    Google Scholar 

  13. Geyer, C.: Markov chain maximum likelihood. In: Keramigas, E. (ed.) Computing Science and Statistics: The 23rd Symposium on the Interface. Interface Foundation, Fairfax (1991)

    Google Scholar 

  14. Geyer, C., Thompson, E.A.: Annealing Markov chain Monte Carlo with applications to ancestral inference. J. Am. Stat. Assoc. 90, 909–920 (1995)

    Article  MATH  Google Scholar 

  15. Gning, A., Mihaylova, L., Maskell, S., Pang, S.K., Godsill, S.: Group object structure and state estimation with evolving networks and Monte Carlo methods. IEEE Trans. Signal Process. 12(2), 523–536 (2011)

    Google Scholar 

  16. Golyandina, N., Nekrutkin, V., Zhigljavsky, A. (eds.): Analysis of Time Series Structure: SSA and Related Techniques. Chapman and Hall, Boca Raton (2001)

    Google Scholar 

  17. Granger, C.W.J.: Investigating causal relations by econometric models and cross-spectral methods. Econometrica 37, 424–438 (1969)

    Article  Google Scholar 

  18. Green, P.J.: Reversible jump Markov chain Monte Carlo computation and Bayesian model determination. Biometrika 82(4), 711–732 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  19. Helbing, D.: Traffic and related self-driven many-particle systems. Rev. Mod. Phys. 73, 1067–1141 (2002)

    Article  Google Scholar 

  20. Holland, P.W.: Statistics and causal inference. J. Am. Stat. Assoc. 81, 945–960 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  21. Iba, Y.: Population-based Monte Carlo algorithms. J. Comput. Gr. Stat. 13(4), 175–193 (2000)

    Google Scholar 

  22. Iba, Y.: Population Monte Carlo algorithms. Trans. Jpn. Soc. Artif. Intell. 16, 279 (2000)

    Article  Google Scholar 

  23. Jasra, A., Stehphens, D.A., Holmes, C.C.: Population-based reversible jump Markov chain Monte Carlo. Biometrica 94(4), 787–807 (2007)

    Article  MATH  Google Scholar 

  24. Khan, Z., Balch, T., Dellaert, F.: MCMC-based particle filtering for tracking a variable number of interacting targets. IEEE Trans. Pattern Anal. Mach. Intell. 27(11), 1805–1819 (2005)

    Article  Google Scholar 

  25. Liu, J.S.: Monte Carlo Strategies in Sceintific Computing. Springer, New York (2001)

    Google Scholar 

  26. Mahler, R.: Statistical Multisource-Multitarget Information Fusion. Artech House, Boston (2007)

    Google Scholar 

  27. Mihaylova, L., Boel, R., Hegyi, A.: Freeway traffic estimation within recursive Bayesian framework. Automatica 43(2), 290–300 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  28. Pang, S.K., Li, J., Godsill, S.J.: Detection and tracking of coordinated groups. IEEE Trans. Aerosp. Electron. Syst. 47(1), 472–502 (2011)

    Article  Google Scholar 

  29. Pantrigo, J., Sánchez, A., Gianikellis, K., Monteymayor, A.S.: Combining particle filter and population based metahuristics for visual articulated object tracking. Electron. Lett. Comput. Vis. Image Anal. 5(3), 68–83 (2005)

    Google Scholar 

  30. Pearl, J.: Causality: Models, Reasoning, and Inference. Cambridge University Press, Cambridge, UK (2000)

    Google Scholar 

  31. Reynolds, C.W.: Flocks, herds, and schools: a distributed behavioral model. Comput. Gr. 21, 25–34 (1987)

    Article  Google Scholar 

  32. Shoam, Y.: Reasoning About Change: Time and Causation from the Standpoint of Artificial Intelligence. MIT, Cambridge (1988)

    Google Scholar 

  33. Strens, M.: Evolutionary MCMC sampling and optimization in discrete spaces. In: Proceedings of the Twentieth International Conference on Machine Learning, Washington, DC (2003)

    Google Scholar 

  34. Vo, B., Singh, S., Doucet, A.: Sequential Monte Carlo methods for multi-target filtering with random finite sets. IEEE Trans. Aerosp. Electron. Syst. 41(4), 1224–1245 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Avishy Y. Carmi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Carmi, A.Y., Mihaylova, L., Septier, F., Pang, S.K., Gurfil, P., Godsill, S.J. (2013). Inferring Leadership from Group Dynamics Using Markov Chain Monte Carlo Methods. In: Ali, S., Nishino, K., Manocha, D., Shah, M. (eds) Modeling, Simulation and Visual Analysis of Crowds. The International Series in Video Computing, vol 11. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8483-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-8483-7_13

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-8482-0

  • Online ISBN: 978-1-4614-8483-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics