Stability of Function Equations in Non-Archimedean Random Spaces

  • Yeol Je Cho
  • Themistocles M. Rassias
  • Reza Saadati
Part of the Springer Optimization and Its Applications book series (SOIA, volume 86)


Throughout this chapter, we assume that X is a vector space and Y is a complete non-Archimedean normed space.


  1. 66.
    M. Eshaghi Gordji, S. Kaboli-Gharetapeh, C. Park, S. Zolfaghri, Stability of an additive–cubic–quartic functional equation. Adv. Differ. Equ. 2009, 395693 (2009) Google Scholar
  2. 241.
    B. Schweizer, A. Sklar, Probabilistic Metric Spaces (Elsevier, North Holland, 1983) zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Yeol Je Cho
    • 1
  • Themistocles M. Rassias
    • 2
  • Reza Saadati
    • 3
  1. 1.College of Education, Department of Mathematics EducationGyeongsang National UniversityChinjuRepublic of South Korea
  2. 2.Department of MathematicsNational Technical University of AthensAthensGreece
  3. 3.Department of MathematicsIran University of Science and TechnologyBehshahrIran

Personalised recommendations