Stability of Functional Equations in RN-Spaces Under Spacial t-Norm

  • Yeol Je Cho
  • Themistocles M. Rassias
  • Reza Saadati
Part of the Springer Optimization and Its Applications book series (SOIA, volume 86)


In this chapter, we consider the stability of some functional equations in random normed spaces under the spacial t-norm, that is, T M via direct method.


  1. 48.
    S. Czerwik, The stability of the quadratic functional equation, in Stability of Mappings of Hyers–Ulam Type, ed. by Th.M. Rassias, J. Tabor (Hadronic Press, Palm Harbor, 1994), pp. 81–91 Google Scholar
  2. 166.
    A.K. Mirmostafaee, M.S. Moslehian, Fuzzy versions of Hyers–Ulam–Rassias theorem. Fuzzy Sets Syst. 159, 720–729 (2008) MathSciNetzbMATHCrossRefGoogle Scholar
  3. 176.
    M.S. Moslehian, K. Nikodem, D. Popa, Asymptotic aspect of the quadratic functional equation in multinormed spaces. J. Math. Anal. Appl. 355, 717–724 (2009) MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Yeol Je Cho
    • 1
  • Themistocles M. Rassias
    • 2
  • Reza Saadati
    • 3
  1. 1.College of Education, Department of Mathematics EducationGyeongsang National UniversityChinjuRepublic of South Korea
  2. 2.Department of MathematicsNational Technical University of AthensAthensGreece
  3. 3.Department of MathematicsIran University of Science and TechnologyBehshahrIran

Personalised recommendations