Advertisement

Preliminaries

  • Yeol Je Cho
  • Themistocles M. Rassias
  • Reza Saadati
Part of the Springer Optimization and Its Applications book series (SOIA, volume 86)

Abstract

In this chapter, we recall some definitions and results which will be used later on in the book.

References

  1. 9.
    C. Alsina, B. Schweizer, A. Sklar, On the definition of a probabilistic normed space. Aequ. Math. 46, 91–98 (1993) MathSciNetzbMATHCrossRefGoogle Scholar
  2. 16.
    K.T. Atanassov, Intuitionistic fuzzy sets. Fuzzy Sets Syst. 20, 87–96 (1986) MathSciNetzbMATHCrossRefGoogle Scholar
  3. 49.
    G. Deschrijver, E.E. Kerre, On the relationship between some extensions of fuzzy set theory. Fuzzy Sets Syst. 23, 227–235 (2003) MathSciNetCrossRefGoogle Scholar
  4. 96.
    J. Goguen, \(\mathcal{L}\)-fuzzy sets. J. Math. Anal. Appl. 18, 145–174 (1967) MathSciNetzbMATHCrossRefGoogle Scholar
  5. 100.
    O. Hadžić, E. Pap, Fixed Point Theory in PM-Spaces (Kluwer Academic, Dordrecht, 2001) Google Scholar
  6. 102.
    O. Hadžić, E. Pap, M. Budincević, Countable extension of triangular norms and their applications to the fixed point theory in probabilistic metric spaces. Kybernetika 38, 363–381 (2002) MathSciNetzbMATHGoogle Scholar
  7. 104.
    P. Hajek, Metamathematics of Fuzzy Logic (Kluwer Academic, Dordrecht, 1998) zbMATHCrossRefGoogle Scholar
  8. 138.
    E.P. Klement, R. Mesiar, E. Pap, Triangular Norms (Kluwer Academic, Dordrecht, 2000) zbMATHCrossRefGoogle Scholar
  9. 139.
    E.P. Klement, R. Mesiar, E. Pap, Triangular norms, position paper I: basic analytical and algebraic properties. Fuzzy Sets Syst. 143, 5–26 (2004) MathSciNetzbMATHCrossRefGoogle Scholar
  10. 140.
    E.P. Klement, R. Mesiar, E. Pap, Triangular norms, position paper II: general constructions and parameterized families. Fuzzy Sets Syst. 145, 411–438 (2004) MathSciNetzbMATHCrossRefGoogle Scholar
  11. 141.
    E.P. Klement, R. Mesiar, E. Pap, Triangular norms, position paper III: continuous t-norms. Fuzzy Sets Syst. 145, 439–454 (2004) MathSciNetzbMATHCrossRefGoogle Scholar
  12. 160.
    K. Menger, Statistical metrics. Proc. Natl. Acad. Sci. USA 28, 535–537 (1942) MathSciNetzbMATHCrossRefGoogle Scholar
  13. 241.
    B. Schweizer, A. Sklar, Probabilistic Metric Spaces (Elsevier, North Holland, 1983) zbMATHGoogle Scholar
  14. 261.
    L.A. Zadeh, Fuzzy sets. Inf. Control 8, 338–353 (1965) MathSciNetzbMATHCrossRefGoogle Scholar
  15. 264.
    H.J. Zimmermann, Fuzzy Set Theory and Its Application (Kluwer, Dordrecht, 1985) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Yeol Je Cho
    • 1
  • Themistocles M. Rassias
    • 2
  • Reza Saadati
    • 3
  1. 1.College of Education, Department of Mathematics EducationGyeongsang National UniversityChinjuRepublic of South Korea
  2. 2.Department of MathematicsNational Technical University of AthensAthensGreece
  3. 3.Department of MathematicsIran University of Science and TechnologyBehshahrIran

Personalised recommendations