# Probabilistic Inequalities

• Michael Zabarankin
• Stan Uryasev
Chapter
Part of the Springer Optimization and Its Applications book series (SOIA, volume 85)

## Abstract

In various statistical decision problems dealing with safety and reliability, risk is often interpreted as the probability of a dread event or disaster, and minimizing the probability of a highly undesirable event is known as the safety-first principle [50]. If the CDF of X is either unknown or complex, the probability in question can be estimated through more simple characteristics such as mean and standard deviation of X, for example, by Markov’s and Chebyshev’s inequalities. Also, if the probability depends on decision variables, then, in general, an optimization problem, in which it is either minimized or constrained, is nonconvex. In this case, the probability can be estimated by an appropriate probabilistic inequality, and then the optimization problem can be approximated by a convex one; see, e.g., [3, 32].

## Keywords

Probability Inequalities Safety-first Principle Chebyshev Dread Event Statistical Decision Problem
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

## References

1. [1]
Acerbi, C.: Spectral measures of risk: a coherent representation of subjective risk aversion. J. Bank. Financ. 26(7), 1487–1503 (2002)
2. [2]
Artzner, P., Delbaen, F., Eber, J.M., Heath, D.: Coherent measures of risk. Math. Financ. 9(3), 203–228 (1999)
3. [3]
Bonami, P., Lejeune, M.A.: An exact solution approach for portfolio optimization problems under stochastic and integer constraints. Oper. Res. 57(3), 650–670 (2009)
4. [4]
Buckley, J.J.: Entropy principles in decision making under risk. Risk Anal. 5(4), 303–313 (1979)
5. [5]
Chang, C.C., Lin, C.J.: Training ν-support vector classifiers: theory and algorithms. Neural Comput. 13, 2119–2147 (2001)
6. [6]
Chekhlov, A., Uryasev, S., Zabarankin, M.: Portfolio Optimization with Drawdown Constraints, pp. 263–278. Risk Books, London (2003)Google Scholar
7. [7]
Chekhlov, A., Uryasev, S., Zabarankin, M.: Drawdown measure in portfolio optimization. Int. J. Theor. Appl. Financ. 8(1), 13–58 (2005)
8. [8]
Cortes, C., Vapnik, V.: Support vector networks. Mach. Learn. 20, 273–297 (1995)
9. [9]
Costa, J., Hero, A., Vignat, C.: On Solutions to Multivariate Maximum-entropy Problems, vol. 2683, pp. 211–228. Springer, Berlin (2003)Google Scholar
10. [10]
Cover, T.M., Thomas, J.A.: Elements of Information Theory, 2nd edn. Wiley, New York (2006)
11. [11]
Cozzolino, J.M., Zahner, M.J.: The maximum-entropy distribution of the future market price of a stock. Oper. Res. 21(6), 1200–1211 (1973)
12. [12]
Crisp, D.J., Burges, C.J.C.: A geometric interpretation of ν-SVM classifiers. Neural Inf. Process. Syst. 12, 244–250 (2000)Google Scholar
13. [13]
Fölmer, H., Schied, A.: Stochastic Finance, 2nd edn. Walter de Gruyter GmbH & Co., Berlin (2004)
14. [14]
Grauer, R.R.: Introduction to asset pricing theory and tests. In: Roll, R. (ed.) The International Library of Critical Writings in Financial Economics. Edward Elgar Publishing Inc., Cheltenham (2001)Google Scholar
15. [15]
Grechuk, B., Zabarankin, M.: Inverse portfolio problem with mean-deviation model. Eur. J. Oper. Res. (2013, to appear)Google Scholar
16. [16]
Grechuk, B., Molyboha, A., Zabarankin, M.: Maximum entropy principle with general deviation measures. Math. Oper. Res. 34(2), 445–467 (2009)
17. [17]
Grechuk, B., Molyboha, A., Zabarankin, M.: Chebyshev’s inequalities with law invariant deviation measures. Probab. Eng. Informational Sci. 24, 145–170 (2010)
18. [18]
Hardy, G.E., Littlewood, J.E., Pólya, G.: Inequalities, 2nd edn. Cambridge University Press, New York (1952)
19. [19]
Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd edn. Springer, New York (2008)Google Scholar
20. [20]
Hull, J.C., White, A.D.: Valuing credit derivatives using an implied copula approach. J. Derivatives 14(2), 8–28 (2006)
21. [21]
Iscoe, I., Kreinin, A., Mausser, H., Romanko, A.: Portfolio credit-risk optimization. J. Bank. Financ. 36(6), 1604–1615 (2012)
22. [22]
Jaynes, E.T.: Information theory and statistical mechanics. Phys. Rev. 106(4), 620–630 (1957)
23. [23]
Jensen, J.L.: Surles fonctions convexes et les inégalités entre les valeurs moyennes. Acta Math. 30(1), 175–193 (1906)
24. [24]
Johnson, O., Vignat, C.: Some results concerning maximum Rényi entropy distributions. Annales de l’Institut Henri Poincare (B) Probab. Stat. 43(3), 339–351 (2007)Google Scholar
25. [25]
Kalinchenko, K., Uryasev, S., Rockafellar, R.T.: Calibrating risk preferences with generalized CAPM based on mixed CVaR deviation. J. Risk 15(1), 45–70 (2012)Google Scholar
26. [26]
Koenker, R., Bassett, G.: Regression quantiles. Econometrica 46, 33–50 (1978)
27. [27]
Kurdila, A., Zabarankin, M.: Convex Functional Analysis. Birkhauser, Switzerland (2005)
28. [28]
Levy, H.: Stochastic dominance and expected utility: survey and analysis. Manag. Sci. 38(4), 555–593 (1992)
29. [29]
Markowitz, H.M.: Portfolio selection. J. Financ. 7(1), 77–91 (1952)Google Scholar
30. [30]
Markowitz, H.M.: Foundations of portfolio theory. J. Financ. 46, 469–477 (1991)
31. [31]
Mercer, J.: Functions of positive and negative type, and their connection with the theory of integral equations. Philos. Trans. Roy. Soc. London 209(441–458), 415–446 (1909)
32. [32]
Molyboha, A., Zabarankin, M.: Stochastic optimization of sensor placement for diver detection. Oper. Res. 60(2), 292–312 (2012)
33. [33]
Ogryczak, W., Ruszczyński, A.: On consistency of stochastic dominance and mean-semideviation models. Math. Program. 89, 217–232 (2001)
34. [34]
Ogryczak, W., Ruszczyński, A.: Dual stochastic dominance and related mean-risk models. SIAM J. Optim. 13(1), 60–78 (2002)
35. [35]
Perez-Cruz, F., Weston, J., Hermann, D.J.L., Schölkopf, B.: Extension of the ν-SVM range for classification. Adv. Learn. Theory Method. Models Appl. 190, 179–196 (2003)Google Scholar
36. [36]
Rockafellar, R.T.: Convex Analysis, Princeton Mathematics Series, vol. 28. Princeton University Press, Princeton (1970)Google Scholar
37. [37]
Rockafellar, R.T.: Coherent approaches to risk in optimization under uncertainty. In: Gray, P. (ed.) Tutorials in Operations Research, pp. 38–61. INFORMS, Hanover (2007)Google Scholar
38. [38]
Rockafellar, R.T., Royset, J.O.: On buffered failure probability in design and optimization of structures. Reliab. Eng. Syst. Saf. 95, 499–510 (2011)
39. [39]
Rockafellar, R.T., Uryasev, S.: Optimization of conditional value-at-risk. J. Risk 2, 21–41 (2000)Google Scholar
40. [40]
Rockafellar, R.T., Uryasev, S.: Conditional value-at-risk for general loss distributions. J. Bank. Financ. 26(7), 1443–1471 (2002)
41. [41]
Rockafellar, R.T., Uryasev, S., Zabarankin, M.: Deviation measures in risk analysis and optimization. Technical Report 2002–7. ISE Department, University of Florida, Gainesville, FL (2002)Google Scholar
42. [42]
Rockafellar, R.T., Uryasev, S., Zabarankin, M.: Generalized deviations in risk analysis. Financ. Stoch. 10(1), 51–74 (2006)
43. [43]
Rockafellar, R.T., Uryasev, S., Zabarankin, M.: Master funds in portfolio analysis with general deviation measures. J. Bank. Financ. 30(2), 743–778 (2006)
44. [44]
Rockafellar, R.T., Uryasev, S., Zabarankin, M.: Optimality conditions in portfolio analysis with general deviation measures. Math. Program. 108(2–3), 515–540 (2006)
45. [45]
Rockafellar, R.T., Uryasev, S., Zabarankin, M.: Equilibrium with investors using a diversity of deviation measures. J. Bank. Financ. 31(11), 3251–3268 (2007)
46. [46]
Rockafellar, R.T., Uryasev, S., Zabarankin, M.: Risk tuning with generalized linear regression. Math. Oper. Res. 33(3), 712–729 (2008)
47. [47]
Roell, A.: Risk aversion in Quiggin and Yaari’s rank-order model of choice under uncertainty. Econ. J. 97(Issue Supplement: Conference papers), 143–159 (1987)Google Scholar
48. [48]
Rousseeuw, P.J., Driessen, K.: Computing LTS regression for large data sets. Data Min. Knowl. Discov. 12(1), 29–45 (2006)
49. [49]
Rousseeuw, P., Leroy, A.: Robust Regression and Outlier Detection. Wiley, New York (1987)
50. [50]
Roy, A.D.: Safety first and the holding of assets. Econometrica 20(3), 431–449 (1952)
51. [51]
Ruszczyński, A.: Nonlinear Optimization. Princeton University Press, Princeton (2006)
52. [52]
Schölkopf, B., Smola, A., Williamson, R., Bartlett, P.: New support vector algorithms. Neural Comput. 12, 1207–1245 (2000)
53. [53]
Sharpe, W.F.: Capital asset prices: a theory of market equilibrium under conditions of risk. J. Financ. 19, 425–442 (1964)Google Scholar
54. [54]
Sharpe, W.F.: Capital asset prices with and without negative holdings. J. Financ. 46, 489–509 (1991)
55. [55]
Takeda, A., Sugiyama, M.: ν-support vector machine as conditional value-at-risk minimization. In: Proceedings of the 25th International Conference on Machine Learning (ICML 2008), pp. 1056–1063. Morgan Kaufmann, Montreal, Canada (2008)Google Scholar
56. [56]
Thomas, M.U.: A generalized maximum entropy principle. Oper. Res. 27(6), 1188–1196 (1979)
57. [57]
Tobin, J.: Liquidity preference as behavior towards risk. Rev. Econ. Stud. 25(2), 65–86 (1958)
58. [58]
Tsyurmasto, P., Zabarankin, M., Uryasev, S.: Value-at-risk support vector machine: stability to outliers. J. Comb. Optim. (2014, to appear)Google Scholar
59. [59]
Venables, W., Ripley, B.: Modern Applied Statistics with S-PLUS, 4th edn. Springer, New York (2002)Google Scholar
60. [60]
van der Waerden, B.: Mathematische Statistik. Springer, Berlin (1957)
61. [61]
Wets, R.J.B.: Statistical estimation from an optimization viewpoint. Ann. Oper. Res. 85, 79–101 (1999)
62. [62]
Yaari, M.E.: The dual theory of choice under risk. Econometrica 55(1), 95–115 (1987)
63. [63]
Zabarankin, M., Pavlikov, K., Uryasev, S.: Capital asset pricing model (CAPM) with drawdown measure. Eur. J. Oper. Res. (2013, to appear)Google Scholar