Skip to main content

Damage Prediction

  • Chapter
  • First Online:
Peridynamic Theory and Its Applications
  • 4234 Accesses

Abstract

Material damage in peridynamics (PD) is introduced through elimination of interactions (micropotentials) among the material points. It is assumed that when the stretch, \( {s_{(k)(j) }} \), between two material points, \( k \) and \( j \), exceeds its critical value, \( {s_c} \), the onset of damage occurs. Damage is reflected in the equations of motion by removing the force density vectors between the material points in an irreversible manner. As a result, the load is redistributed among the material points in the body, leading to progressive damage growth in an autonomous fashion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ayatollahi MR, Aliha MRM (2009) Analysis of a new specimen for mixed mode fracture tests on brittle materials. Eng Fract Mech 76:1563–1573

    Article  Google Scholar 

  • Foster JT, Silling SA, Chen W (2011) An energy based failure criterion for use with peridynamic states. Int J Multiscale Comput Eng 9:675–688

    Article  Google Scholar 

  • Silling SA, Askari E (2005) A meshfree method based on the peridynamic model of solid mechanics. Comput Struct 83:1526–1535

    Article  Google Scholar 

  • Silling SA, Bobaru F (2005) Peridynamic modeling of membranes and fibers. Int J Non-Linear Mech 40:395–409

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Madenci, E., Oterkus, E. (2014). Damage Prediction. In: Peridynamic Theory and Its Applications. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8465-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-8465-3_6

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-8464-6

  • Online ISBN: 978-1-4614-8465-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics