Skip to main content

Structured Linear Systems

  • Chapter
  • First Online:
A Graduate Introduction to Numerical Methods

Abstract

We define structured linear systems to include sparse systems or systems with correlated entries or both. We define the structured backward error and a structured condition number. We give examples of various classes of structured linear systems and examples of algorithms that take advantage of the special structure. ⊲

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    See Davis and Hu (2011) for a beautiful collection of useful sparse matrices. See http://www.cise.ufl.edu/research/sparse/matrices/synopsis/ for an introduction to visualizing large sparse matrices by minimizing the “energy” in a graph related to the matrix.

  2. 2.

    Also, see Fig. 16.15 for spy pictures of sparse matrices arising in finite-difference solutions to partial differential equations.

  3. 3.

    Here, we only warn the reader. See Higham (2002 ​, chap. 13) for a detailed introduction to these issues.

  4. 4.

    See Davis (2006), whose techniques are used under the hood in Matlab and in many other problem-solving environments.

  5. 5.

    Available at http://www.cise.ufl.edu/research/sparse/matrices/Bai/bfwa398.html.

  6. 6.

    Using exact arithmetic, this is really practical only if k ≪ n (Chen et al. 2002).

  7. 7.

    This is a quote from David S. Watkins, in Hogben (2006 chapter 43).

  8. 8.

    To name two, Toh and Trefethen (1994) and Edelman and Murakami (1995).

  9. 9.

    See Corless et al. (1997) and, for example, Graillat and Trébuchet (2009).

  10. 10.

    See Manocha (1994) and Shakoori (2008).

  11. 11.

    For more on this, see Demmel and Koev (2005).

References

  • Arnol’d, V. I. (1971). On matrices depending on parameters. Russian Mathematical Surveys, 26(2), 29–43.

    Article  Google Scholar 

  • Ascher, U. M., Mattheij, R. M. M., & Russell, R. D. (1988). Numerical solution of boundary problems for ordinary differential equations. Upper Saddle River, NJ: Prentice-Hall.

    MATH  Google Scholar 

  • Bini, D., & Boito, P. (2010). In: D.A. Bini, V. Mehrmann, V. Olshevsky, E.E. Tyrtyshnikov, M. van Barel (Eds.), A fast algorithm for approximate polynomial GCD based on structured matrix computations. Numerical methods for structured matrices and applications, Operator Theory: Advances and Applications, Springer, 199, 155–173.

    Google Scholar 

  • Bini, D., & Pan, V. Y. (1994). Polynomial and matrix computations: fundamental algorithms, vol. 1. Basel: Birkhäuser Verlag.

    Book  MATH  Google Scholar 

  • Böttcher, A., & Grudsky, S. M. (1987). Spectral properties of banded Toeplitz matrices. Philadelphia: SIAM.

    Google Scholar 

  • Boyd, J. P. (2002). Computing zeros on a real interval through Chebyshev expansion and polynomial rootfinding. SIAM Journal on Numerical Analysis, 40(5), 1666–1682.

    Article  MATH  MathSciNet  Google Scholar 

  • Chen, L., Eberly, W., Kaltofen, E., Saunders, D. B., Turner, W., & Villard, G. (2002). Efficient matrix preconditioners for black box linear algebra. Linear Algebra and Its Applications, 343, 119–146.

    Article  MathSciNet  Google Scholar 

  • Corless, R. M., Gianni, P. M., & Trager, B. M. (1997). A reordered Schur factorization method for zero-dimensional polynomial systems with multiple roots. In: Proceedings of the 1997 International Symposium on Symbolic and Algebraic Computation, ISSAC ’97, pp. 133–140. New York: ACM.

    Book  Google Scholar 

  • Dahlquist, G., & Björck, Å. (2008). Numerical methods in scientific computing, vol. 1. Philadelphia: SIAM.

    Book  MATH  Google Scholar 

  • Davis, T. (2006). Direct methods for sparse linear systems. Philadelphia: SIAM.

    Book  MATH  Google Scholar 

  • Davis, T. A., & Hu, Y. (2011). The University of Florida sparse matrix collection. ACM Transactions on Mathematical Software, 38(1), 1:1–1:25.

    Google Scholar 

  • Demmel, J., & Koev, P. (2005). The accurate and efficient solution of a totally positive generalized Vandermonde linear system. SIAM Journal on Matrix Analysis and Applications, 27(1), 142–152.

    Article  MATH  MathSciNet  Google Scholar 

  • Edelman, A., & Murakami, H. (1995). Polynomial roots from companion matrix eigenvalues. Mathematics of Computation, 64(210), 763–776.

    Article  MATH  MathSciNet  Google Scholar 

  • Geist, K., Parlitz, U., & Lauterborn, W. (1990). Comparison of different methods for computing Lyapunov exponents. Progress of Theoretical Physics, 83(5), 875–893.

    Article  MATH  MathSciNet  Google Scholar 

  • Golub, G., & Welsch, J. (1969). Calculation of Gauss quadrature rules. Mathematics of Computation, 23, 221–230.

    Article  MATH  MathSciNet  Google Scholar 

  • Gonnet, P. (2010). Increasing the reliability of adaptive quadrature using explicit interpolants. ACM Transactions on Mathematical Software, 37, 26:1–26:32.

    Google Scholar 

  • Graham, R., Knuth, D., & Patashnik, O. (1994). Concrete mathematics: a foundation for computer science. Reading, MA: Addison-Wesley.

    MATH  Google Scholar 

  • Heffernan, J. M., & Corless, R. M. (2006). Solving some delay differential equations with computer algebra. Mathematical Scientist, 31(1), 21–34.

    MATH  MathSciNet  Google Scholar 

  • Higham, D. J. (1989a). Robust defect control with Runge–Kutta schemes. SIAM Journal on Numerical Analysis, 26(5), 1175–1183.

    Article  MATH  MathSciNet  Google Scholar 

  • Higham, N. (2008). Functions of matrices: theory and computation. Philadelphia: SIAM.

    Book  Google Scholar 

  • Hoffman, P. (1998). The man who loved only numbers: the story of Paul Erdös and the search for mathematical truth. New York: Hyperion.

    MATH  Google Scholar 

  • Hogben, L. (Ed.), (2006). Handbook of linear algebra. Chapman and Hall/CRC, Boca Raton, FL.

    Google Scholar 

  • Kahaner, D., Moler, C., & Nash, S. (1989). Numerical methods and software. Englewood Cliffs, Prentice–Hall, Englewood Cliffs, NJ.

    Google Scholar 

  • Li, Z., Osborne, M., & Prvan, T. (2005). Parameter estimation of ordinary differential equations. IMA Journal of Numerical Analysis, 25(2), 264–285.

    Article  MATH  MathSciNet  Google Scholar 

  • Lyche, T., & Peña, J. M. (2004). Optimally stable multivariate bases. Advances in Computational Mathematics, 20, 149–159.

    Article  MATH  MathSciNet  Google Scholar 

  • Nedialkov, N., & Pryce, J. (2007). Solving differential-algebraic equations by Taylor series (II): computing the system Jacobian. BIT Numerical Mathematics, 47(1), 121–135.

    Article  MATH  MathSciNet  Google Scholar 

  • Niven, I. (1981). Maxima and minima without calculus. Number 6 in Dolciani Mathematical Expositions. The Mathematical Association of America, Washington, D.C.

    Google Scholar 

  • Oettli, W., Prager, W., & Wilkinson, J. (1965). Admissible solutions of linear systems with not sharply defined coefficients. Journal of the Society for Industrial and Applied Mathematics: Series B, Numerical Analysis, 2(2), 291–299.

    MATH  MathSciNet  Google Scholar 

  • Olds, C. D. (1963). Continued fractions. New York: Random House.

    MATH  Google Scholar 

  • Olshevsky, V., (Ed.), (2001a). Structured matrices in mathematics, computer science, and engineering I, vol. 280 of Contemporary mathematics. Philadelphia: American Mathematical Society.

    Google Scholar 

  • Schönfinkel, M. (1924). On the building blocks of mathematical logic. In: J. Van Heijenoort, (Ed.), From Frege to Gödel: a source book in mathematical logic, 1879–1931, pp. 355. Harvard University Press, Harvard, MA.

    Google Scholar 

  • Söderlind, G. (2003). Digital filters in adaptive time-stepping. ACM Transactions on Mathematical Software, 29, 1–26.

    Article  MATH  Google Scholar 

  • Takahasi, H., & Mori, M. (1974). Double exponential formulas for numerical integration. RIMS, Kyoto University, pp. 721–741.

    Google Scholar 

  • Van Loan, C. (1992). Computational frameworks for the fast Fourier transform. Philadelphia: SIAM.

    MATH  Google Scholar 

  • Wu, W., Wang, F., & Chang, M. (2010). Sensitivity analysis of dynamic biological systems with time-delays. BMC Bioinformatics, 11(Suppl 7), S12.

    Article  Google Scholar 

  • Zhao, J., Davison, M., & Corless, R. M. (2007). Compact finite difference method for American option pricing. Journal of Computational and Applied Mathematics, 206, 306–321.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Corless, R.M., Fillion, N. (2013). Structured Linear Systems. In: A Graduate Introduction to Numerical Methods. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8453-0_6

Download citation

Publish with us

Policies and ethics