Skip to main content

Modeling Dropwise Condensation

  • Chapter
  • First Online:
Dropwise Condensation on Inclined Textured Surfaces

Part of the book series: SpringerBriefs in Applied Sciences and Technology ((BRIEFSTHERMAL))

Abstract

The large body of literature available on the subject suggests the following three independent mechanisms of dropwise condensation: (1) The vapor condenses primarily between the droplets, i.e., the droplet-free area. This condensate layer gets transported to the droplets in their vicinity by surface diffusion. According to this model, the thin film between the droplets and the free surface of the droplets contribute to overall heat transfer. (2) While vapor condensation begins in a filmwise mode, the film reaches a critical thickness and ruptures due to surface tension-driven instability forming droplets. It is postulated that major part of the heat transfer takes place at this very thin condensate film, while the droplets mainly act as liquid collectors. (3) Droplets are only formed at individual nucleation sites, while the area between the droplets is regarded to be inactive with respect to condensation. In this model, heat transfer occurs only through the droplets and is primarily limited by their heat conduction resistance. Majority of the studies support this mechanism, in which the condensate is in the form of discrete drops located at the nucleation sites on or underneath a lyophobic substrate. A mathematical model based on the third mechanism is developed in this chapter.

A comprehensive mathematical model of dropwise condensation underneath an inclined substrate with and without wettability gradient is presented. The dropwise condensation process is hierarchical because it starts from the atomic scale and progresses on to the macro-scale. The mathematical models of various subprocesses in dropwise condensation are described and correlated to experimental observations. Individual models of atomic level condensation, nucleation of a drop of minimum radius, growth by direct condensation, coalescence, instability, and fresh nucleation leading to a condensation cycle are described.The model is then presented in the form of a numerical algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aarts DGAL, Lekkerkerker HNW, Guo H, Wegdam GH, Bonn D (2005) Hydrodynamics of droplet coalescence. Phys Rev Lett 95:1645031–1645034

    Google Scholar 

  • Abu-Orabi M (1998) Modeling of heat transfer in dropwise condensation. Int J Heat Mass Transf 41:81–87

    MATH  Google Scholar 

  • Andrieu C, Beysens DA, Nikolayev VS, Pomeau Y (2002) Coalescence of sessile drops. J Fluid Mech 453:427–438

    MathSciNet  MATH  Google Scholar 

  • Annapragada SR, Murthy JY, Garimella SV (2012) Droplet retention on an incline. Int J Heat Mass Transf 55:1457–1465

    MATH  Google Scholar 

  • Bansal GD, Khandekar S, Muralidhar K (2009) Measurement of heat transfer during dropwise condensation of water on polyethylene. Nanoscale Microscale Thermophys Eng 13(3):184–201

    Google Scholar 

  • Bartelt MC, Tringides MC, Evans JW (1993) Island size scaling in surface deposition processes. Phys Rev B 47:13891–13894

    Google Scholar 

  • Berthier J (2008) Microdrops and digital microfluidics. William Andrew Inc., Norwich, pp 75–179

    Google Scholar 

  • Bloch PE, Smargiassi E, Car R, Laks DB, Andreoni W, Pantelides ST (1993) First principle calculations self-diffusion constants in silicon. Phys Rev Lett 70:2435–2438

    Google Scholar 

  • Boreyko JB, Chen CH (2009) Self-propelled dropwise condensate on superhydrophobic surfaces. Phys Rev Lett 103:184501–184504

    Google Scholar 

  • Briscoe BJ, Galvin KP (1991b) The sliding of sessile and pendent droplets the critical condition. J Colloid Interface Sci 52:219–229

    Google Scholar 

  • Brown RA, Orr FM, Scriven LV (1980) Static drop on an inclined plate: analysis by the finite element method. J Colloid Interface Sci 73(1):76–87

    Google Scholar 

  • Brune H (1998) Microscopic view of epitaxial metal growth: nucleation and aggregation. Surf Sci Rep 31(3):121–229

    Google Scholar 

  • Brune H, Bales GS, Jacobsen J, Boragno C, Kern K (1999) Measuring surface diffusion from nucleation island densities. Phys Rev B 60:5991–6006

    Google Scholar 

  • Burnside BM, Hadi HA (1999) Digital computer simulation of dropwise condensation from equilibrium droplet to detectable size. Int J Heat Mass Transf 42:3137–3146

    MATH  Google Scholar 

  • Carey VP (2008) Liquid-vapor phase-change phenomena, 2nd edn. Taylor and Francis Group, LLC, New York, pp 45–472

    Google Scholar 

  • Chaudhury MK, Whiteside GM (1992) How to make water run uphill. Science 256:1539–1541

    Google Scholar 

  • Chen LH, Chen CY, Lee YL (1999) Nucleation and growth of clusters in the process of vapor deposition. Surf Sci 429:150–160

    Google Scholar 

  • Chen LY, Baldan MR, Ying SC (1996) Surface diffusion in the low-friction limit: processes. Phys Rev B 54:8856–8861

    Google Scholar 

  • Citakoglu E, Rose JW (1968a) Dropwise condensation some factors influencing the validity of heat-transfer measurements. Int J Heat Mass Transf 11:523–537

    Google Scholar 

  • Citakoglu E, Rose JW (1968b) Dropwise condensation the effect of surface inclination. Int J Heat Mass Transf 12:645–451

    Google Scholar 

  • Daniel S, Chaudhury MK, Chen JC (2001) Fast drop movements resulting from the phase-change on a gradient surface. Science 291:633–636

    Google Scholar 

  • Dietz C, Rykaczewski K, Fedorov AG, Joshi Y (2010) Visualization of droplet departure on a superhydrophobic surface and implications to heat transfer enhancement during dropwise condensation. Appl Phys Lett 97:033104–3

    Google Scholar 

  • Dimitrakopoulos P, Higdon JJL (1999) On the gravitational displacement of three-dimensional fluid droplets from inclined solid surfaces. J Fluid Mech 395:181–209

    MATH  Google Scholar 

  • Duchemin L, Eggers J, Josserand C (2003) Inviscid coalescence of drops. J Fluid Mech 487:167–178

    MATH  Google Scholar 

  • Dussan EB (1985) On the ability of drops or bubbles to stick to non-horizontal surface of solids. J Fluid Mech 151:1–20

    MATH  Google Scholar 

  • Eggers J, Lister JR, Stone HA (1999) Coalescence of liquid drops. J Fluid Mech 401:293–310

    MathSciNet  MATH  Google Scholar 

  • ElSherbini AI, Jacobi AM (2004a) Liquid drops on vertical and inclined surfaces I: an experimental study of drop geometry. J Colloid Interface Sci 273:556–565

    Google Scholar 

  • ElSherbini AI, Jacobi AM (2006) Retention forces and contact angles for critical liquid drops on non-horizontal surfaces. J Colloid Interface Sci 299:841–849

    Google Scholar 

  • ElSherbini AI, Jacobi AM (2004b) Liquid drops on vertical and inclined surfaces II: an experimental study of drop geometry. J Colloid Interface Sci 273:566–575

    Google Scholar 

  • Extrand CW, Kumagai Y (1995) Liquid drop on an inclined plane: the relation between contact angles drop shape and retentive forces. J Colloid Interface Sci 170:515–521

    Google Scholar 

  • Fang C, Hidrovo C, Wang F, Eaton J, Goodson K (2008) 3-D numerical simulation of contact angle hysteresis for microscale two phase flow. Int J Multiphas Flow 34:690–705

    Google Scholar 

  • Gao L, McCarthy TJ (2006) Contact angle hysteresis explained. Langmuir 22:6234–6237

    Google Scholar 

  • Glicksman RL, Hunt WA (1972) Numerical simulation of dropwise condensation. Int J Heat Mass Transf 15:2251–2269

    Google Scholar 

  • Gose E, Mucciordi AN, Baer E (1976) Model for dropwise condensation on randomly distributed sites. Int J Heat Mass Transf 10:15–22

    Google Scholar 

  • Graham C (1969) The limiting heat transfer mechanism of dropwise condensation. PhD thesis, Massachusetts Institute of Technology, USA

    Google Scholar 

  • Graham C, Griffith P (1973) Dropwise size distribution and heat transfer in dropwise condensation. Int J Heat Mass Transf 16:337–346

    Google Scholar 

  • Grand NL, Daerr A, Limit L (2005) Shape and motion of drops sliding down an inclined plane. J Fluid Mech 541:253–315

    Google Scholar 

  • Greenspan HP (1978) On the motion of a small viscous droplet that wets a surface. J Fluid Mech 84(1):125–143

    MATH  Google Scholar 

  • Hao P, Lv C, Yao Z, He F (2010) Sliding behavior of water droplet on superhydrophobic surface. Lett J Explor (EPL) 90:660031–660036

    Google Scholar 

  • Hashimoto H, Kotake S (1995) In-situ measurement of clustering process near condensate. Thermal Sci Eng 3:37–43

    Google Scholar 

  • Ivanovskii MN, Subbotin VI, Milovanov YV (1967) Heat transfer with dropwise condensation of mercury vapor. Teploenergetika 14:81–85

    Google Scholar 

  • Jakob M (1936) Heat transfer in evaporation and condensation. Mech Eng 58:643–660

    Google Scholar 

  • Kapur N, Gaskell PH (2007) Morphology and dynamics of droplet coalescence on a surface. Phys Rev Lett 97:0563151–0563154

    Google Scholar 

  • Kim HY, Lee H, Kang BH (2002) Sliding of drops down an inclined solid surface. J Colloid Sci 247:372–382

    Google Scholar 

  • Kim S, Kim KJ (2011) Dropwise condensation suitable for superhydrophobic surfaces. ASME J Heat Transf 133(8):0815021–0815028

    Google Scholar 

  • Kotake S (1998) Molecular clusters. In: Tien C-L, Majumdar A, Gerner FM (eds) Microscale energy transport. Taylor & Francis, Washington, DC, pp 167–185

    Google Scholar 

  • Krischer S, Grigull U (1971) Microscopic study of dropwise condensation. Wärme-und Stoffübertragung 4:48–59

    Google Scholar 

  • Le Fevre EJ, Rose JW (1966) A theory of heat transfer by dropwise condensation. Proc. 3rd international heat transfer conference, Chicago, vol. 2. pp. 362–375

    Google Scholar 

  • Leach RN, Stevens F, Langford SC, Dickinson JT (2006) Dropwise condensation: experiments and simulations of nucleation and growth of water drops in a cooling System. Langmuir 22:8864–8872

    Google Scholar 

  • Lee YL, Maa JR (1991) Nucleation and growth of condensate clusters on solid surfaces. J Mater Sci 26:6068–6072

    Google Scholar 

  • Leipertz A (2010) Dropwise condensation. In: Stephan P (ed) VDI heat atlas VDI-GVC, 2nd edn. Springer, Germany, pp 933–937

    Google Scholar 

  • Leipertz A, Fröba AP (2006) Improvement of condensation heat transfer by surface modification. Proceedings of the seventh ASME, heat and mass transfer conf., IIT Guwahati, India, K7. pp. k85–k99

    Google Scholar 

  • Leipertz A, Fröba AP (2008) Improvement of condensation heat transfer by surface modifications. Heat Transf Eng 29(4):343–356

    Google Scholar 

  • Liao Q, Zhu X, Xing SM, Wang H (2008) Visualization study on coalescence between pair of water drops on inclined surfaces. Exp Thermal Fluid Sci 32(8):1647–1654

    Google Scholar 

  • Liu T, Mu C, Sun X, Xia S (2007) Mechanism study on formation of initial condensate droplets. AIChE J 53(4):1050–31055

    Google Scholar 

  • Ma X, Wang S, Lan Z, Peng B, Ma HB, Cheng P (2012) Wetting mode evolution of steam dropwise condensation on superhydrophobic surface in the presence of non-condensable gas. ASME J Heat Transf 134:021501–021509

    Google Scholar 

  • Maa JR (1978) Drop-size distribution and heat flux of dropwise condensation. Chem Eng J 16:171–176

    MathSciNet  Google Scholar 

  • McCormic JL, Baer E (1963) On the mechanism of heat transfer in dropwise condensation. J Collide Sci 18:208–216

    Google Scholar 

  • McCormick JL, Westwater JW (1965) Nucleation sites for dropwise condensation. Chem Eng Sci 20:1021–1031

    Google Scholar 

  • McCoy BJ (2000) Vapor nucleation and droplet growth: cluster distribution kinetics for open and closed Systems. J Colloid Interface Sci 228:64–72

    Google Scholar 

  • Meakin P (1992) Steady state behavior in a model for droplet growth sliding and coalescence: the final stage of dropwise condensation. Phys A 183:422–438

    Google Scholar 

  • Miljkovic N, Enright R, Wang EN (2012) Effect of droplet morphology on growth dynamics and heat transfer during condensation on superhydrophobic nanostructured surfaces. ACS Nano 6:1776–1785

    Google Scholar 

  • Moumen N, Subramanian R, McLaughlin JB (2006) Experiments on the motion of drops on a horizontal solid surface due to wettability gradient. Langmuir 22:2682–2690

    Google Scholar 

  • Mu C, Pang J, Liu T (2008) Effect of surface topography of material on nucleation site density of dropwise condensation. Chem Eng Sci 63:874–880

    Google Scholar 

  • Narhe R, Beysens D, Nikolayev VS (2004) Contact line dynamics in drop coalescence and spreading. Langmuir 20:1213–1221

    Google Scholar 

  • Narhe R, Beysens D, Nikolayev VS (2005) Dynamics of drop coalescence on a surface: the role of initial conditions and surface properties. Int J Thermophys 26:8593–8597

    Google Scholar 

  • Oura K, Lifshits VG, Saranin AA, Zotov AV, Katayama M (2003) Surface science, 1st edn. Springer, Berlin, pp 220–260

    Google Scholar 

  • Paulsen JD, Burton JC, Nagel SR (2011) Viscous to inertial crossover in liquid drop coalescence. Phys Rev Lett 106:1145011–1145014

    Google Scholar 

  • Peng XF, Liu D, Lee DJ, Yan Y, Wang BX (2000) Cluster dynamics and fictitious boiling in micro-channels. Int J Heat Mass Transf 43:4259–4265

    MATH  Google Scholar 

  • Ratsch C, Venables JA (2003) Nucleation theory and the early stages of thin film growth. J Vacuum Soc Technol A21(5):s96–s109

    Google Scholar 

  • Ratsch C, Zangwill A (1994) Saturation and scaling of epitaxial island densities. Phys Rev Lett 72:3194–3197

    Google Scholar 

  • Ratsch C, Seitsonen AP, Scheffler M (1997) Strain dependence of surface diffusion: Ag on Ag (111) and Pt (111). Phys Rev B 55:6750–6753

    Google Scholar 

  • Rio E, Daerr A, Andreotti B, Limat L (2005) Boundary conditions in the vicinity of a dynamic contact line: experimental investigation of viscous drops sliding down an inclined plane. Phys Rev Lett 94:0245031–0245034

    Google Scholar 

  • Ristenpart WD, McCalla PM, Roy RV, Stone HA (2006) Coalescence of spreading droplets on a wettable substrate. Phys Rev Lett 97:0645011–0645014

    Google Scholar 

  • Rose JW (1976) Further aspects of dropwise condensation theory. Int J Heat Mass Transf 19:1363–1370

    Google Scholar 

  • Rose JW (1978a) The effect of surface thermal conductivity on dropwise condensation heat transfer. Int J Heat Mass Transf 21:80–81

    Google Scholar 

  • Rose JW (1981) Condensation theory. Int J Heat Mass Transf 24:191–194

    Google Scholar 

  • Rose JW, Glicksman LR (1973) Dropwise condensation-the distribution of drop sizes. Int J Heat Mass Transf 16:411–425

    Google Scholar 

  • Rose JW (1978b) Effect of conductivity tube material on heat transfer during dropwise condensation of steam. Int J Heat Mass Transf 21:835–840

    Google Scholar 

  • Rose JW (2002) Dropwise condensation: theory and experiments: a review. Proc Instit Mech Eng U S A 216:115–118

    Google Scholar 

  • Rykaczewski K (2012) Microdroplet growth mechanism during water condensation on superhydrophobic surfaces. Langmuir 28:7720–7729

    Google Scholar 

  • Sakai M, Hashimoto A (2007) Image analysis system for evaluating sliding behavior of a liquid droplet on a hydrophobic surface. Rev Sci Instrum 78:045103–045109

    Google Scholar 

  • Sakai M, Hashimoto A, Yoshida N, Suzuki S, Kameshima Y, Nakajima A (2006) Direct observation of internal fluidity in a water droplet during sliding on hydrophobic surfaces. Langmuir 22:4906–4909

    Google Scholar 

  • Sellier M, Trelluyer E (2009) Modeling the coalescence of sessile droplets. Biomicrofluidics 3:0224121–02241213

    Google Scholar 

  • Sellier M, Nock V, Verdier C (2011) Self-propelling coalescing droplets. Int J Multiphas Flow 37:462–468

    Google Scholar 

  • Shi F, Shim Y, Amar JG (2005) Island-size distribution and capture numbers in three-dimensional nucleation: comparison with mean-field behavior. Phys Rev B 71:245411–245416

    Google Scholar 

  • Sikarwar BS, Khandekar S, Muralidhar K (2013a) Mathematical modeling of dropwise condensation on textured surfaces. Sadhana (Springer), accepted for publication

    Google Scholar 

  • Sikarwar BS, Khandekar S, Muralidhar K (2013) Simulation of flow and heat transfer in a liquid drop sliding underneath a hydrophobic surface. Int J Heat Mass Transf 57(2):786–811

    Google Scholar 

  • Sikarwar BS, Khandekar S, Agrawal S, Kumar S, Muralidhar K (2012) Dropwise condensation studies on multiple scales. Heat Transf Eng Special Issue Adv Heat Transf 33(4–5):301–341

    Google Scholar 

  • Song T, Lan Z, Ma X, Bai T (2009) Molecular clustering physical model of steam condensation and the experimental study on the initial droplet size distribution. Int J Thermal Sci 48:2228–2236

    Google Scholar 

  • Song Y, Xu D, Lin J, Tsian S (1991) A study on the mechanism of dropwise condensation. Int J Heat Mass Transf 34(11):2827–2831

    Google Scholar 

  • Stroscio JS, Pierce DT (1994) Scaling of diffusion mediated island growth in iron-on-iron homoepitaxy. Phys Rev B 49:8522–8525

    Google Scholar 

  • Suzuki S, Nakajima A, Sakai M, Song J, Yoshida N, Kameshima Y, Okada K (2006) Sliding acceleration of water droplets on a surface coated with fluoroalkysline and octadecyltrimethoxysilane. Surf Sci 600:2214–2219

    Google Scholar 

  • Tanaka H (1975a) A theoretical study of dropwise condensation. J Heat Transf 97(1):97–103

    Google Scholar 

  • Tanaka H (1975b) Measurement of drop-size distribution during transient dropwise condensation. J Heat Transf 97:341–346

    Google Scholar 

  • Tanasawa I, Ochiiai J, Utaka Y, En-Ya S (1974) Dropwise condensation. 11th Japanese heat transfer symposium, vol. 229

    Google Scholar 

  • Thoroddsen ST, Qian B, Etoh TG, Takehara K (2007) The initial coalescence of miscible drops. Phys Fluids 19:0721101–07211020

    Google Scholar 

  • Thoroddsen ST, Takehara K, Etoh TG (2005) The coalescence speed of pendent and a sessile drop. J Fluid Mech 527:85–114

    MathSciNet  MATH  Google Scholar 

  • Tian Y, Wang XD, Peng XF (2004) Analysis of surface inside metastable bulk phase during gas–liquid phase transition. J Eng Thermophys (Chin) 25:100–102

    Google Scholar 

  • Tsuruta T (1993) Constriction resistance in dropwise condensation. Proc. of the ASME engineering foundation conference on condensation and condenser design. pp. 109–170

    Google Scholar 

  • Umur A, Griffith P (1965) Mechanism of dropwise condensation. ASME J Heat Transf 87:275–282

    Google Scholar 

  • Vemuri S, Kim KJ (2006) An experimental and theoretical study on the concept of dropwise condensation. Int J Heat Mass Transf 49:649–857

    Google Scholar 

  • Venables JA (2000) Introduction to surface and thin film processes, 1st edn. Cambridge University Press, Cambridge, UK, pp 120–175

    Google Scholar 

  • Wang H, Liao Q, Zhu X, Li J, Tian X (2010) Experimental studies of liquid droplet coalescence on the gradients. Surface J Superconduct Novel Magnet 23:1165–1168

    Google Scholar 

  • Wang XD, Tian Y, Peng XF (2003) Self-aggregation of vapor–liquid phase transition. Progr Natl Sci (Chin) 13:281–286

    Google Scholar 

  • Wu M, Cubaud T, Ho CM (2004) Scaling law in a liquid drop coalescence driven by surface tension. Phys Fluids 16(7):51–54

    Google Scholar 

  • Wu WH, Maa JR (1976) On the heat transfer in dropwise condensation. Chem Eng J 12:225–231

    Google Scholar 

  • Wu Y, Yang C, Yuan X (2001) Drop distribution and numerical simulation of dropwise condensation heat transfer. Int J Heat Mass Transf 44:4455–4464

    MATH  Google Scholar 

  • Yang CX, Wang LG, Yuan XG, Ma CF (1998) Dropwise condensation as typical fractal growth process. J Aerospace Power 13(3):272–276

    Google Scholar 

  • Yoshida N, Abe Y, Shigeta H, Nakajima A, Ohsaki K, Watanable T (2006) Sliding behavior of droplet on flat polymer surface. J Am Chem Soc 128:743–747

    Google Scholar 

  • Zhao H, Beysens D (1995) From droplet growth to film growth on a heterogeneous surface: condensation associated with a wettability gradient. Langmuir 11(2):627–634

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Khandekar, S., Muralidhar, K. (2014). Modeling Dropwise Condensation. In: Dropwise Condensation on Inclined Textured Surfaces. SpringerBriefs in Applied Sciences and Technology(). Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8447-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-8447-9_2

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-8446-2

  • Online ISBN: 978-1-4614-8447-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics