Pharmacokinetic and Pharmacodynamic Modeling in Anesthesia

Abstract

Before 1950, we little understood what drugs did to patients (pharmacodynamics) or what patients did to drugs (pharmacokinetics). In 1949, Faulconer et al correlated the EEG with the sedative/anesthetic effects of nitrous oxide. In 1960, Price simulated thiopental pharmacokinetics. In 1963, Eger extended the simulation to inhaled anesthetics and invented MAC. From 1972 to 1997, Sheiner and Rosenberg used computer models to predict pharmacokinetics in individuals, leading to the population principle. In 1978, Hull used the effect site concept to understand the time course of pancuronium’s effect. From 1978 to 1986, Sheiner and Beal defined methods for estimating the parameters controlling drug behavior, developing NONMEM to estimate population pharmacokinetics. In the 1980s, Schwilden published models allowing control of anesthetic concentrations. With Stoeckel, he devised a target controlled infusion (TCI) system that could maintain a target drug concentration.

Keywords

Pharmacodynamics of anesthesia Pharmacokinetics of anesthesia Population principle TCI system for anesthesia Target controlled infusion system for anesthesia TCI pharmacodynamics of anesthesia 

References

  1. 1.
    Sheiner LB. Computer-aided long-term anticoagulation therapy. Comput Biomed Res. 1969;2:507–18.PubMedCrossRefGoogle Scholar
  2. 2.
    Sheiner LB, Rosenberg B, Melmon KL. Modelling of individual pharmacokinetics for computer-aided drug dosage. Comput Biomed Res. 1972;5:411–59.PubMedCrossRefGoogle Scholar
  3. 3.
    Peck CC, Sheiner LB, Martin CM, Combs DT, Melmon KL. Computer-assisted digoxin therapy. N Engl J Med. 1973;289:441–6.PubMedCrossRefGoogle Scholar
  4. 4.
    Sheiner LB, Rosenberg B, Marathe VV. Estimation of population characteristics of pharmacokinetic parameters from routine clinical data. J Pharmacokinet Biopharm. 1977;5:445–79.PubMedCrossRefGoogle Scholar
  5. 5.
    Sheiner LB, Steimer JL. Pharmacokinetic/pharmacodynamic modeling in drug development. Annu Rev Pharmacol Toxicol. 2000;40:67–95.PubMedCrossRefGoogle Scholar
  6. 6.
    Sheiner LB. Learning versus confirming in clinical drug development. Clin Pharmacol Ther. 1997;61:275–91.Google Scholar
  7. 7.
    Stanski DR, Rowland M, Sheiner LB. Getting the dose right: report from the Tenth European Federation of Pharmaceutical Sciences (EUFEPS) conference on optimizing drug development. J Pharmacokinet Pharmacodyn. 2005;32:199–211.PubMedCrossRefGoogle Scholar
  8. 8.
    Peck CC, Rubin DB, Sheiner LB. Hypothesis: a single clinical trial plus causal evidence of effectiveness is sufficient for drug approval. Clin Pharmacol Ther. 2003;73:481-90.CrossRefGoogle Scholar
  9. 9.
    Sheiner LB, Beal S, Rosenberg B, Marathe VV. Forecasting individual pharmacokinetics. Clin Pharmacol Ther. 1979;26:294–305.PubMedGoogle Scholar
  10. 10.
    Sheiner LB, Beal SL. Evaluation of methods for estimating population pharmacokinetics parameters. I. Michaelis-Menten model: routine clinical pharmacokinetic data. J Pharmacokinet Biopharm. 1980;8:553–71.PubMedCrossRefGoogle Scholar
  11. 11.
    Sheiner LB. Analysis of pharmacokinetic data using parametric models. II. Point estimates of an individual’s parameters. J Pharmacokinet Biopharm. 1985;13:515–40.Google Scholar
  12. 12.
    Sheiner LB, Beal SL. Evaluation of methods for estimating population pharmacokinetic parameters. III. Monoexponential model: routine clinical pharmacokinetic data. J Pharmacokinet Biopharm. 1983;11:303–19.PubMedCrossRefGoogle Scholar
  13. 13.
    Grasela TH, Sheiner LB, Rambeck B, Boenigk HE, Dunlop A, Mullen PW, Wadsworth J, Richens A, Ishizaki T, Chiba K et al. Steady-state pharmacokinetics of phenytoin from routinely collected patient data. Clin Pharmacokinet. 1983;8:355–64.PubMedCrossRefGoogle Scholar
  14. 14.
    Price HL. A dynamic concept of the distribution of thiopental in the human body. Anesthesiology. 1960;21:40–5.PubMedCrossRefGoogle Scholar
  15. 15.
    Eger EI. II: Application of a mathematical model of gas uptake. In: Papper EM, Kitz RJ editor. Uptake and distribution of anesthetic agents. New York, McGraw-Hill; 1963. pp. 88–103.Google Scholar
  16. 16.
    Sheiner LB, Stanski DR, Vozeh S, Miller RD, Ham J. Simultaneous modeling of pharmacokinetics and pharmacodynamics: application to d-tubocurarine. Clin Pharmacol Ther. 1979;25:358–71.Google Scholar
  17. 17.
    Hull CJ, Van Beem HB, McLeod K et al. A pharmacodynamic model for pancuronium. Br J Anaesth. 1978;50:1113–23.PubMedCrossRefGoogle Scholar
  18. 18.
    Verotta D, Sheiner LB. Simultaneous modeling of pharmacokinetics and pharmacodynamics: an improved algorithm. Comput Appl Biosci. 1987;3:345-9.Google Scholar
  19. 19.
    Sheiner LB. The use of serum concentrations of digitalis for quantitative therapeutic decisions. Cardiovasc Clin. 1974;6:141–51.PubMedGoogle Scholar
  20. 20.
    Soy D, Beal SL, Sheiner LB. Population one-compartment pharmacokinetic analysis with missing dosage data. Clin Pharmacol Ther. 2004;76:441–51.PubMedCrossRefGoogle Scholar
  21. 21.
    Girard P, Sheiner LB, Kastrissios H, Blaschke TF. Do we need full compliance data for population pharmacokinetic analysis? J Pharmacokinet Biopharm. 1996;24:265–82.PubMedCrossRefGoogle Scholar
  22. 22.
    Kshirsagar SA, Blaschke TF, Sheiner LB, Krygowski M, Acosta EP, Verotta D. Improving data reliability using a non-compliance detection method versus using pharmacokinetic criteria. J Pharmacokinet Pharmacodyn. 2007;34:35–55.PubMedCrossRefGoogle Scholar
  23. 23.
    Shafer SL, Varvel JR, Aziz N, Scott JC. The pharmacokinetics of fentanyl administered by computer controlled infusion pump. Anesthesiology. 1990;73:1091–102.PubMedCrossRefGoogle Scholar
  24. 24.
    Shafer SL. Critical thinking in anesthesia: eighth Honorary FAER Research Lecture. Anesthesiology. 2009;110:729–37.PubMedCrossRefGoogle Scholar
  25. 25.
    Fisher DM, Canfell PC, Fahey MR, Rosen JI, Rupp SM, Sheiner LB, Miller RD. Elimination of atracurium in humans: contribution of Hofmann elimination and ester hydrolysis versus organ-based elimination. Anesthesiology. 1986;65:6–12.PubMedCrossRefGoogle Scholar
  26. 26.
    Kisor DF, Schmith VD, Wargin WA, Lien CA, Ornstein E, Cook DR. Importance of the organ-independent elimination of cisatracurium. Anesth Analg. 1996;83:1065–71.PubMedGoogle Scholar
  27. 27.
    Bragg P, Fisher DM, Shi J, Donati F, Meistelman C, Lau M, Sheiner LB. Comparison of twitch depression of the adductor pollicis and the respiratory muscles. Pharmacodynamic modeling without plasma concentrations. Anesthesiology. 1994;80:310–9.PubMedCrossRefGoogle Scholar
  28. 28.
    Fisher DM, Wright PM. Are plasma concentration values necessary for pharmacodynamic modeling of muscle relaxants? Anesthesiology. 1997;86:567–75.PubMedCrossRefGoogle Scholar
  29. 29.
    Caton R. The electrical currents of the brain (abstract). BMJ 1875;2:278.Google Scholar
  30. 30.
    Fleischl von Marxow E. Mittheilung betreffend die Physiologie der Hirnrinde. Zentralbl Physiol. 1890;4:537–540.Google Scholar
  31. 31.
    Berger H. Uber das Elektrenkaphalogramm des Menschen. Arch Psychiatry. 1933;101:452.CrossRefGoogle Scholar
  32. 32.
    Gibbs FA, Gibbs EL, Lennox WG. Effect on the electro-encephalogram of certain drugs which influence nervous activity. Arch Intern Med. 1937;60:154.CrossRefGoogle Scholar
  33. 33.
    Faulconer A, Pender JW, Bickford RG. The influence of partial pressure of nitrous oxide on the depth of anesthesia and the electro-encephalogram in man. Anesthesiology. 1949;10:601–9.PubMedCrossRefGoogle Scholar
  34. 34.
    Faulconer A Jr. Correlation of concentrations of ether in arterial blood with electro-encephalographic patterns occurring during ether-oxygen and during nitrous oxide, oxygen and ether anesthesia of human surgical patients. Anesthesiology. 1952;13:361.Google Scholar
  35. 35.
    Galla SJ, Rocco AG, Vandam LD. Evaluation of the traditional signs and stages of anesthesia: an electroencephalographic and clinical study. Anesthesiology. 1958;19(361):328–38.PubMedCrossRefGoogle Scholar
  36. 36.
    Martin JT, Faulconer A Jr, Bickford RG. Electroencephalography in anesthesiology. Anesthesiology. 1959;20:359–76.PubMedCrossRefGoogle Scholar
  37. 37.
    Levy WJ, Shapiro HM, Maruchak G, et al. Automated EEG processing for intraoperative monitoring: a comparison of techniques. Anesthesiology. 1980;53:223.PubMedCrossRefGoogle Scholar
  38. 38.
    Rampil IJ. What every neuroanesthesiologist should know about electroencephalograms and computerized monitors. Anesthesiol Clin North Am. 1992;10:683.Google Scholar
  39. 39.
    Drummond JC, Brann CA, Perkins DE, et al. A comparison of median frequency, spectral edge frequency, a frequency band power ratio, total power and dominance shift in the determination of depth of anesthesia. Acta Anaesthesiol Scand 1991;35:693.PubMedCrossRefGoogle Scholar
  40. 40.
    Long CW, Shah NK, Lounghlin C, et al. A comparison of EEG determinants of near awakening from isoflurane and fentanyl anesthesia. Anesth Analg. 1989;69:169.PubMedGoogle Scholar
  41. 41.
    Dwyer RC, Rampil IJ, Eger EI, et al. The electroencephalogram does not predict depth of isoflurane anesthesia. Anesthesiology. 1994;81:403.PubMedCrossRefGoogle Scholar
  42. 42.
    Rampil IJ, Holzer JA, Quest DO, Rosenbaum SH. Correll JW: Prognostic value of computerized EEG analysis during carotid endarterectomy. Anesth Analg. 1983;62:186–92.PubMedCrossRefGoogle Scholar
  43. 43.
    Rampil IJ, Matteo RS. Changes in EEG spectral edge frequency correlate with the hemodynamic response to laryngoscopy and intubation. Anesthesiology. 1987;67:139–42.PubMedCrossRefGoogle Scholar
  44. 44.
    Hudson RJ, Stanski DR, Saidman LJ, Meathe E. A model for studying depth of anesthesia and acute tolerance to thiopental. Anesthesiology. 1983;59:301–8.PubMedCrossRefGoogle Scholar
  45. 45.
    Stanski DR, Hudson RJ, Homer TD, Saidman LJ, Meathe E. Pharmacodynamic modeling of thiopental anesthesia. J Pharmacokinet Biopharm. 1984;12:223–40.PubMedCrossRefGoogle Scholar
  46. 46.
    Dripps RD, Dundee JW, Price HL. Acute tolerance to thiopentone in man. Br J Anaesth. 1956;28:344–52.PubMedCrossRefGoogle Scholar
  47. 47.
    Homer TD, Stanski DR. The effect of increasing age on thiopental disposition and anesthetic requirement. Anesthesiology. 1985;62:714–24.PubMedCrossRefGoogle Scholar
  48. 48.
    Bührer M, Maitre PO, Hung OR, Ebling WF, Shafer SL, Stanski DR. Thiopental pharmacodynamics. I. Defining the pseudo-steady-state serum concentration-EEG effect relationship. Anesthesiology. 1992;77:226–36.PubMedCrossRefGoogle Scholar
  49. 49.
    Hung OR, Varvel JR, Shafer SL, Stanski DR. Thiopental pharmacodynamics. II. Quantitation of clinical and electroencephalographic depth of anesthesia. Anesthesiology. 1992;77:237–44.PubMedCrossRefGoogle Scholar
  50. 50.
    Scott JC, Stanski DR. Decreased fentanyl and alfentanil dose requirements with age. A simultaneous pharmacokinetic and pharmacodynamic evaluation. J Pharmacol Exp Ther. 1987;240:159–66.PubMedGoogle Scholar
  51. 51.
    Scott JC, Ponganis KV, Stanski DR. EEG quantitation of narcotic effect: the comparative pharmacodynamics of fentanyl and alfentanil. Anesthesiology. 1985;62:234–41.PubMedCrossRefGoogle Scholar
  52. 52.
    Scott JC, Cooke JE, Stanski DR. Electroencephalographic quantitation of opioid effect: comparative pharmacodynamics of fentanyl and sufentanil. Anesthesiology. 1991;74:34–42.PubMedCrossRefGoogle Scholar
  53. 53.
    Arden JR, Holley FO, Stanski DR. Increased sensitivity to etomidate in the elderly: initial distribution versus altered brain response. Anesthesiology. 1986;65:19–27.PubMedCrossRefGoogle Scholar
  54. 54.
    Schüttler J, Stanski DR, White PF, Trevor AJ, Horai Y, Verotta D, Sheiner LB. Pharmacodynamic modeling of the EEG effects of ketamine and its enantiomers in man. J Pharmacokinet Biopharm. 1987;15:241–53.PubMedCrossRefGoogle Scholar
  55. 55.
    Bührer M, Maitre PO, Hung O, Stanski DR. Electroencephalographic effects of benzodiazepines. I. Choosing an electroencephalographic parameter to measure the effect of midazolam on the central nervous system. Clin Pharmacol Ther. 1990;48:544–54.PubMedCrossRefGoogle Scholar
  56. 56.
    Bührer M, Maitre PO, Crevoisier C, Stanski DR. Electroencephalographic effects of benzodiazepines. II. Pharmacodynamic modeling of the electroencephalographic effects of midazolam and diazepam. Clin Pharmacol Ther. 1990;48:555–67.PubMedCrossRefGoogle Scholar
  57. 57.
    Ebling WF, Wada DR, Stanski DR. From piecewise to full physiologic pharmacokinetic modeling: applied to thiopental disposition in the rat. J Pharmacokinet Biopharm. 1994;22:259–92.PubMedCrossRefGoogle Scholar
  58. 58.
    Björkman S, Wada DR, Stanski DR, Ebling WF. Comparative physiological pharmacokinetics of fentanyl and alfentanil in rats and humans based on parametric single-tissue models. J Pharmacokinet Biopharm. 1994;22:381–410.PubMedCrossRefGoogle Scholar
  59. 59.
    Shafer SL, Varvel JR. Pharmacokinetics, pharmacodynamics, and rational opioid selection. Anesthesiology. 1991;74:53–63.PubMedCrossRefGoogle Scholar
  60. 60.
    Egan TD, Lemmens HJ, Fiset P, Hermann DJ, Muir KT, Stanski DR, Shafer SL. The pharmacokinetics of the new short-acting opioid remifentanil (GI87084B) in healthy adult male volunteers. Anesthesiology. 1993;79:881–92.PubMedCrossRefGoogle Scholar
  61. 61.
    Minto CF, Schnider TW, Egan TD, Youngs E, Lemmens HJ, Gambus PL, Billard V, Hoke JF, Moore KH, Hermann DJ, Muir KT, Mandema JW, Shafer SL. Influence of age and gender on the pharmacokinetics and pharmacodynamics of remifentanil. I. Model development. Anesthesiology. 1997;86:10–23.PubMedCrossRefGoogle Scholar
  62. 62.
    Minto CF, Schnider TW, Shafer SL. The influence of age and gender on the pharmacokinetics and pharmacodynamics of remifentanil. II. Model application. Anesthesiology. 1997;86:24–33.PubMedCrossRefGoogle Scholar
  63. 63.
    Egan TD, Muir KT, Hermann DJ, Stanski DR, Shafer SL. The electroencephalogram (EEG) and clinical measure of opioid potency: defining the EEG-clinical potency relationship (“fingerprint”) with application to remifentanil. Int J Pharm Med. 2001;15:1–9.CrossRefGoogle Scholar
  64. 64.
    Krüger-Thiemer E. Continuous intravenous infusion and multicompartment accumulation. Eur J Clin Pharmacol. 1968;4:317–24.CrossRefGoogle Scholar
  65. 65.
    Schwilden H. A general method for calculating the dosage scheme in linear pharmacokinetics. Eur J Clin Pharmacol. 1981;20:379–86.PubMedCrossRefGoogle Scholar
  66. 66.
    Lauven PM, Stoeckel H, Schwilden H. A microprocessor controlled infusion scheme for midazolam to achieve constant plasma levels. Anaesthesist. 1982;31:15–20 (German).PubMedGoogle Scholar
  67. 67.
    Ausems ME, Hug CC Jr, Lange S de. Variable rate infusion of alfentanil as a supplement to nitrous oxide anesthesia for general surgery. Anesth Analg. 1983;62:982–6.PubMedCrossRefGoogle Scholar
  68. 68.
    Ausems ME, Stanski DR, Hug CC. An evaluation of the accuracy of pharmacokinetic data for the computer assisted infusion of alfentanil. Br J Anaesth. 1985;57:1217–25.PubMedCrossRefGoogle Scholar
  69. 69.
    Ausems ME, Hug CC Jr, Stanski DR et al. Plasma concentrations of alfentanil required to supplement nitrous oxide anesthesia for general surgery. Anesthesiology. 1986;65:362–373.PubMedCrossRefGoogle Scholar
  70. 70.
    Available from www.opentci.org, last accessed June 20, 2011Google Scholar
  71. 71.
    Bickford RG. Automated electroencephalographic control of general anesthesia. J EEG and Clin Neurophysiol. 1950;2:93–96.Google Scholar
  72. 72.
    Bellville JW, Attura GM. Servo control of general anesthesia. Science. 1957;126:827–830.Google Scholar
  73. 73.
    Eger EI II, Johnson EA, Larson CP Jr, Severinghaus JW The uptake and distribution of intravenous ether Anesthesiology. 1962;23:647–50.Google Scholar
  74. 74.
    Schwilden H, Schüttler J, Stoeckel H. Quantitation of the EEG and pharmacodynamic modelling of hypnotic drugs: etomidate as an example. Eur J Anaesthesiol. 1985;2:121–31.PubMedGoogle Scholar
  75. 75.
    Schwilden H, Schüttler J, Stoeckel H. Closed-loop feedback control of methohexital anesthesia by quantitative EEG analysis in humans. Anesthesiology. 1987;67:341–7.PubMedCrossRefGoogle Scholar
  76. 76.
    Shafer A, Doze VA, Shafer SL, White PF. Pharmacokinetics and pharmacodynamics of propofol infusions during general anesthesia. Anesthesiology. 1988;69:348–56.PubMedCrossRefGoogle Scholar
  77. 77.
    Maitre PO, Vozeh S, Heykants J, Thomson DA. Stanski DR: Population pharmacokinetics of alfentanil: the average dose-plasma concentration relationship and interindividual variability in patients. Anesthesiology. 1987;66:3–12.PubMedCrossRefGoogle Scholar
  78. 78.
    Alvis JM, Reves JG, Spain JA. Sheppard LC: Computer-assisted continuous infusion of the intravenous analgesic fentanyl during general anesthesia-an interactive system. IEEE Trans Biomed Eng. 1985;32:323–9.PubMedCrossRefGoogle Scholar
  79. 79.
    Reves JG, Glass P, Jacobs JR. Alfentanil and midazolam: new anesthetic drugs for continuous infusion and an automated method of administration. Mt Sinai J Med. 1989;56:99–107.PubMedGoogle Scholar
  80. 80.
    Shafer SL, Siegel LC, Cooke JE, Scott JC. Testing computer controlled infusion pumps by simulation. Anesthesiology. 1988;68:261–6.PubMedCrossRefGoogle Scholar
  81. 81.
    Eger EI II. Anesthetic uptake and action. Williams and Wilkins; 1974. pp. 240–2.Google Scholar
  82. 82.
    Hughes MA, Glass PS, Jacobs JR. Context-sensitive half-time in multicompartment pharmacokinetic models for intravenous anesthetic drugs. Anesthesiology. 1992;76:334–41.PubMedCrossRefGoogle Scholar
  83. 83.
    Hung OR, Varvel JR, Shafer SL, Stanski DR. Thiopental pharmacodynamics: II. Quantitation of clinical and EEG depth of anesthesia. Anesthesiology. 1992;77:237–44.PubMedCrossRefGoogle Scholar
  84. 84.
    Varvel JR, Donoho DL, Shafer SL. Measuring the predictive performance of computer controlled infusion pumps. J Pharmacokinet Biopharm. 1992;20:63–94.PubMedCrossRefGoogle Scholar
  85. 85.
    Shafer SL, Gregg KM. Algorithms to rapidly achieve and maintain stable drug concentrations at the site of drug effect with a computer controlled infusion pump. J Pharmacokinet Biopharm. 1992;20:147–69.PubMedCrossRefGoogle Scholar
  86. 86.
    Gregg K, Varvel JR, Shafer SL. Application of semilinear canonical correlation to the measurement of opioid drug effect. J Pharmacokinet Biopharm. 1992;20:611–635.Google Scholar
  87. 87.
    Gambús PL, Schnider TW, Minto CF, Youngs EJ, Billard V, Brose WG, Hochhaus G, Shafer SL. The pharmacokinetics of i.v. dynorphin a(1–13) in opioid naive and opioid treated human volunteers. Clin Pharmacol Therapeut. 1998;64:27–38.Google Scholar
  88. 88.
    Billard V, Gambus PL, Chamoun N, Stanski DR, Shafer SL. A comparison of spectral edge, delta power, and bispectral index as EEG measures of alfentanil, propofol, and midazolam drug effect. Clin Pharmacol Therapeut. 1997;61:45–58.Google Scholar
  89. 89.
    Schnider TW, Minto CF, Gambus PL, Andresen C, Goodale DB, Shafer SL, Youngs EJ. The influence of method of administration and covariates on the pharmacokinetics of propofol in adult volunteers. Anesthesiology. 1998;88:1170–1182.Google Scholar
  90. 90.
    Schnider TW, Minto CF, Shafer SL, Gambus PL, Andresen C, Goodale DB, Youngs EJ. The Influence of age on propofol pharmacodynamics. Anesthesiology. 1999;90:1502–16.Google Scholar
  91. 91.
    Barr J, Egan TD, Sandoval NF, Zomorodi K, Cohane C, Gambus PL, Shafer SL. Propofol dosing regimens for ICU sedation based upon an integrated pharmacokinetic-pharmacodynamic model. Anesthesiology.2001;95:324–33.Google Scholar
  92. 92.
    Zomorodi K, Donner A, Jacques S, Barr J, Sladen R, Ramsay J, Geller E, Shafer SL. Population pharmacokinetics of midazolam administered by target controlled infusion for sedation following coronary artery bypass grafting. Anesthesiology. 1998;89:1418–29.PubMedCrossRefGoogle Scholar
  93. 93.
    Somma J, Donner A, Zomorodi K, Sladen R, Ramsay J, Geller E, Shafer SL. Population pharmacodynamics of midazolam administered by target controlled Infusion in SICU patients after CABG surgery. Anesthesiology. 1998;89:1430–43.PubMedCrossRefGoogle Scholar
  94. 94.
    Minto CF, Schnider TW, Short TG, Gregg KM, Gentilini A. Shafer SL. response surface model for anesthetic drug interactions. Anesthesiology. 2000;92:1603–816.PubMedCrossRefGoogle Scholar
  95. 95.
    Minto CF, Schnider TW, Gregg KM, Henthorn TK, Shafer SL. Using the time of maximum effect-site concentration to combine pharmacokinetics and pharmacodynamics. Anesthesiology. 2003;99:324–33.PubMedCrossRefGoogle Scholar
  96. 96.
    Bouillon T, Bruhn J, Radu-Radulescu L, Andresen C, Cohane C, Shafer SL. A model of the ventilatory depressant potency of remifentanil in the non steady state. Anesthesiology. 2003;99:779–87.PubMedCrossRefGoogle Scholar
  97. 97.
    Bouillon T, Bruhn J, Radu-Radulescu L, Andresen C, Cohane C, Shafer SL. Mixed-effects modeling of the intrinsic ventilatory depressant potency of propofol in the non-steady state. Anesthesiology. 2004;100:240–50.PubMedCrossRefGoogle Scholar
  98. 98.
    Bouillon TW, Bruhn J, Radulescu L, Andresen C, Shafer TJ, Cohane C, Shafer SL. Pharmacodynamic Interaction between propofol and remifentanil regarding hypnosis, tolerance of laryngoscopy, bispectral index and electroencephalographic approximate entropy. Anesthesiology. 2004;100:1353–72.PubMedCrossRefGoogle Scholar
  99. 99.
    Theil DR, Stanley TE 3rd, White WD, Goodman DK, Glass PS, Bai SA, Jacobs JR, Reves JG. Midazolam and fentanyl continuous infusion anesthesia for cardiac surgery: a comparison of computer-assisted versus manual infusion systems. J Cardiothorac Vasc Anesth. 1993;7:300–6.PubMedCrossRefGoogle Scholar
  100. 100.
    Jacobs JR, Reves JG, Marty J et al. Aging increases pharmacodynamic sensitivity to the hypnotic effects of midazolam. Anesth Analg. 1995;80:143–8.PubMedGoogle Scholar
  101. 101.
    Glass PS, Jacobs JR, Smith LR, Ginsberg B, Quill TJ, Bai SA, Reves JG. Pharmacokinetic model-driven infusion of fentanyl: assessment of accuracy. Anesthesiology. 1990;73:1082–90.PubMedCrossRefGoogle Scholar
  102. 102.
    Sebel PS, Glass PS, Fletcher JE, Murphy MR, Gallagher C, Quill T. Reduction of the MAC of desflurane with fentanyl. Anesthesiology. 1992;76:52–9.PubMedCrossRefGoogle Scholar
  103. 103.
    McEwan AI, Smith C, Dyar O, Goodman D, Smith LR, Glass PS. Isoflurane minimum alveolar concentration reduction by fentanyl. Anesthesiology. 1993;78:864–9.PubMedCrossRefGoogle Scholar
  104. 104.
    Sebel PS, Lang E, Rampil IJ, White PF, Cork R, Jopling M, Smith NT, Glass PS, Manberg P. A multicenter study of bispectral electroencephalogram analysis for monitoring anesthetic effect. Anesth Analg. 1997;84:891–9.PubMedGoogle Scholar
  105. 105.
    Gan TJ, Glass PS, Windsor A, Payne F, Rosow C, Sebel P, Manberg P. Bispectral index monitoring allows faster emergence and improved recovery from propofol, alfentanil, and nitrous oxide anesthesia. BIS Utility Study Group. Anesthesiology. 1997;87:808–15.PubMedCrossRefGoogle Scholar
  106. 106.
    Glass PS, Bloom M, Kearse L, Rosow C, Sebel P, Manberg P. Bispectral analysis measures sedation and memory effects of propofol, midazolam, isoflurane, and alfentanil in healthy volunteers. Anesthesiology. 1997;86:836–47.PubMedCrossRefGoogle Scholar
  107. 107.
    Kapila A, Glass PS, Jacobs JR, Muir KT, Hermann DJ, Shiraishi M, Howell S, Smith RL. Measured context-sensitive half-times of remifentanil and alfentanil. Anesthesiology. 1995;83:968–75.PubMedCrossRefGoogle Scholar
  108. 108.
    Jacobs JR, Shafer SL, Larsen JL. Hawkins ED: Two equally valid interpretations of the linear multi-compartmental mammillary pharmacokinetic model. J Pharm Sci. 1990;79:331–3.PubMedCrossRefGoogle Scholar
  109. 109.
    Price HA. Dynamic concept of the distribution of thiopentalthe human body. Anesthesiology.1960;21:40–5.Google Scholar
  110. 110.
    Krejcie TC, Avram MJ, Gentry WB, Niemann CU, Janowski MP, Henthorn TK. A recirculatory model of the pulmonary uptake and pharmacokinetics of lidocaine based on analysis of arterial and mixed venous data from dogs. J Pharmacokinet Biopharm. 1997;25:169–90.PubMedCrossRefGoogle Scholar
  111. 111.
    Billard V, Gambus PL, Chamoun N, Stanski DR, Shafer SL. A comparison of spectral edge, delta power, and bispectral index as EEG measures of alfentanil, propofol, and midazolam drug effect. Clin Pharmacol Ther. 1997;61:45–58.PubMedCrossRefGoogle Scholar

Copyright information

© Edmond I Eger, MD 2014

Authors and Affiliations

  1. 1.P Less ThanSan FranciscoUSA
  2. 2.School of MedicineStanford UniversityStanfordUSA

Personalised recommendations