Skip to main content

Nonsink In Vitro Dissolution Testing of Amorphous Solid Dispersions

  • Chapter
  • First Online:
Melt Extrusion

Part of the book series: AAPS Advances in the Pharmaceutical Sciences Series ((AAPS,volume 9))

Abstract

Solid dispersion technology has been used over the last three decades to improve the dissolution and oral absorption of poorly soluble compounds. While the characterization of dissolution performance of crystalline pharmaceutical systems has long been established, the dynamic nature of the amorphous dissolution processes requires the use of unique methodologies. The in vitro differentiation of the drug and drug-containing species of these systems is crucial to accomplishing the measurement of the critical-to-performance free drug concentrations as a function of time. This chapter describes the theoretical aspects of amorphous dissolution and recent examples applying free drug dissolution testing to the oral bioavailability assessment of solid dispersion formulations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Amorphous solid dispersion (ASD) is used to describe a homogenous dispersion of noncrystalline API and excipient(s) at molecular compositions. Similar systems are often described as solid dispersions, amorphous molecular dispersions, solid solutions, solid liquids, and others.

  2. 2.

    It is typically stated that between 40  and 70 % of new chemical entities under development in the pharmaceutical industry are insoluble (van de Waterbeemd and Gifford 2003 ; Benet and Wu 2006 ).

  3. 3.

    (a) Zelboraf (vemurafenib) CDER (2011), (b) Incivek (telaprevir) Bottorf et al. (2007) , (c) Intelence (etravirine) Pomerantz (2007) , (d) Kaletra (lopinavir and rotinavir) Rosenberg et al. (2008) , and (e) Cesamet (nabilone) Dong (2005) .

  4. 4.

    Center for Drug Evaluation and Research Application No. 202429, Clinical Pharmacology and Biopharmaceutics Review(s), www.accessdata.fda.gov.

  5. 5.

    http://www.pharmacopeia.cn/v29240/usp29nf24s0_c711.html.

References

  • Abhishek B, Chandrakumar N (2011) Real-time in vitro drug dissolution studies of tablets using volume-localized NMR (MRS). Appl Magn Reson 40:251–259

    Article  Google Scholar 

  • Alonzo DE, Gao Y, Zhou D, Mo H, Zhang GGZ, Taylor LS (2011) Dissolution and precipitation behavior of amorphous solid dispersions. J Pharm Sci 100:3316–3331

    Article  PubMed  CAS  Google Scholar 

  • Amidon GL, Lennernäs H, Shah VP, Crison JR (1995) A theoretical basis for a biopharmaceutical drug classification: the correlation of in vitro drug product dissolution and in vivo bioavailability. Pharm Res 12:413–420

    Article  PubMed  CAS  Google Scholar 

  • Arndt M, Chokshi H, Tang K, Parrott NJ, Reppas C, Dressman JB (2013, Aug) Dissolution media simulating the proximal canine gastrointestinal tract in the fasted state. Eur J Pharm Biopharm 84(3):633–641

    Google Scholar 

  • Balakrishnan A, Rege BD, Amidon GL, Polli JE (2004) Surfactant-mediated dissolution: contributions of solubility enhancement and relatively low micelle diffusivity. J Pharm Sci 93:2064–2075

    Article  PubMed  CAS  Google Scholar 

  • Balata G, Mahdi M, Bakera RA (2010) Improvement of solubility and dissolution properties of ketoconazole by solid dispersion and inclusion complexes. Asian J Pharm Sci 5:1–12

    Google Scholar 

  • Benet LZ, Wu C-Y (2006) Using a biopharmaceutics drug disposition classification system to predict bioavailability and elimination characteristics of new molecular entities. New Jersey Drug Metabolism Discussion Group (NJDMDG), Somerset, NJ. October 5:2006

    Google Scholar 

  • Bevernage J, Brouwers J, Clarysse S, Vertzon M, Tack J, Annaert P, Augustijns P (2010) Drug supersaturation in simulated and human intestinal fluids representing different nutritional states. J Pharm Sci 99:4525–4534

    Google Scholar 

  • Bikiaris DN (2011) Solid dispersions, part I: recent evolutions and future opportunities in manufacturing methods for dissolution rate enhancement of poorly water-soluble drugs. Expert Opin Drug Deliv 8:1501–1519

    Article  PubMed  CAS  Google Scholar 

  • Bottorf KJ, Katstra JP, Gasper F (2007) US Patent 2007/0218138. Sept. 20th, 2007

    Google Scholar 

  • Breitenbach J (2002) Melt extrusion: from process to drug delivery technology. Eur J Pharm Biopharm 54:107–117

    Article  PubMed  CAS  Google Scholar 

  • Brouwers J, Brewster ME, Augustijns P (2009) Supersaturating drug delivery systems: the answer to solubility-limited oral bioavailability? J Pharm Sci 98:2549–2572

    Article  PubMed  CAS  Google Scholar 

  • Brown CK, Chokshi HP, Nickerson B, Reed RA, Rohrs BR, Shah PA (2004) Acceptable analytical practices for dissolution testing of poorly soluble compounds. Pharm Technol 28:56–65

    CAS  Google Scholar 

  • Cardot J-M, Beyssac E, Alric M (2007) In vitro–in vivo correlation: importance of dissolution in IVIVC. Dissolution Technol 14:15–19

    CAS  Google Scholar 

  • CDER (2011) NDA submission application #202429. March 21, 2011

    Google Scholar 

  • Chen Y, Lu Y, Chen J, Lai J, Sun J, Hu F, Wu W (2009) Enhanced bioavailability of the poorly water-soluble drug fenofibrate by using liposomes containing bile salt. Int J Pharm 376:153–160

    Article  PubMed  CAS  Google Scholar 

  • Chiou WL, Reigelman S (1971) Pharmaceutical applications of solid dispersion systems. J Pharm Sci 60:1281–1302

    Article  PubMed  CAS  Google Scholar 

  • Crowley MM, Zhang F, Repka MA, Thumma S, Upadhye SB, Battu SK, McGinity JW, Martin C (2007) Pharmaceutical applications of hot melt extrusion: part I. Drug Dev Ind Pharm 33:909–926

    Article  PubMed  CAS  Google Scholar 

  • Dahlberg C (2010) Doctoral thesis, Royal Institute of Technology, Stockholm, Sweden

    Google Scholar 

  • DiNunzio JC, Miller DA, Yang W, McGinity JW, Williams RO (2008) Amorphous compositions using concentrating enhancing polymers for improved bioavailability of itraconazole. Mol Pharm 5:968–980

    Article  PubMed  CAS  Google Scholar 

  • Dong W (2005) Multiparticulate drug delivery system for lipophilic drugs and macromolecules. PhD dissertation in Chemistry, Freie Universität, Berlin

    Google Scholar 

  • Fotaki N, Vertzoni M (2010) Biorelevant dissolution methods and their application in in vitro–in vivo correlations for oral formulations. Open Drug Deliv J 4:2–13

    Article  CAS  Google Scholar 

  • Friesem DT, Shanker R, Crew M, Smithey DT, Curatolo WJ, Nightingale JS (2008) Hydroxypropyl methylcellulose acetate succinate-based spray-dried dispersions: an overview. Mol Pharm 5:1003–1019

    Article  Google Scholar 

  • Goldberg AH, Gibaldi M, Kanig JL (1965) Increasing dissolution rates and gastrointestinal absorption of drugs via solid solutions and eutectic mixtures I. Theoretical consideration and discussion of the literature. J Pharm Sci 54:1145–1148

    Article  PubMed  CAS  Google Scholar 

  • Gowthamarajan K, Singh SK (2010) Dissolution testing for poorly soluble drugs: a continuing perspective. Dissolution Technol 17:24–32

    CAS  Google Scholar 

  • Guzmán HR, Tawa M, Zhang Z, Ratanabanangkoon P, Shaw P, Gardner CR, Chen H, Moreau J-P, Almarsson Ö, Remenar JF (2007) Combined use of crystalline salt forms and precipitation inhibitors to improve oral absorption of celecoxib from solid oral formulations. J Pharm Sci 96:2686–2702

    Article  PubMed  Google Scholar 

  • Janssens S, Van der Mooter G (2009) Review: physical chemistry of solid dispersions. J Pharm Pharmacol 61:1571–1586

    Article  PubMed  CAS  Google Scholar 

  • Kojima T, Higashi K, Suzuki T, Tomono K, Moribe K, Yamamoto K (2012) Stabilization of a supersaturated solution of mefenamic acid from a solid dispersion with EUDRAGIT® EPO. Pharm Res 29:2777–2791

    Article  PubMed  CAS  Google Scholar 

  • Leuner C, Dressman J (2000) Improving drug solubility for oral delivery using solid dispersions. Eur J Pharm Biopharm 50:47–60

    Article  PubMed  CAS  Google Scholar 

  • Martinez MN, Amidon GL (2002) A mechanistic approach to understanding the factors affecting drug absorption: a review of the fundamentals. J Clin Pharmacol 42:620–643

    Article  PubMed  CAS  Google Scholar 

  • Oakley DE (1994) Scale-up of spray dryers with the aid of computational fluid dynamics. Dry Technol 12:217–233

    Article  CAS  Google Scholar 

  • Otsuka K, Shono Y, Dressman JB (2013) Coupling biorelevant dissolution, methods with physiologically based pharmacokinetic modelling to forecast in-vivo performance of solid oral dosage forms. J Pharm Pharmacol 65:937–952

    Google Scholar 

  • Padden BE, Miller JM, Robbins T, Zocharski PD, Prasad L, Spence JK, LaFountaine J (2011) Amorphous solid dispersions as enabling formulations for discovery and early development. Am Pharm Rev 14:66–73

    CAS  Google Scholar 

  • Patel RP, Suthar AM (2009) Spray drying technology: an overview. Indian J Sci Technol 2:44–47

    CAS  Google Scholar 

  • Pomerantz RJ (2007) Combining biomedical research within academia and industry in the 21st century (keynote address), AAPS Annual Meeting, 2007, San Diego, CA

    Google Scholar 

  • Repka MA, Battu SK, Upadhye SB, Thumma S, Crowley MM, Zhang F, Martin C, McGinity JW (2007) Pharmaceutical applications of hot melt extrusion: part II. Drug Dev Ind Pharm 33:1043–1057

    Article  PubMed  CAS  Google Scholar 

  • Reppas C, Vertzoni M (2012) Biorelevant in-vitro performance testing of orally administered dosage forms. J Pharm Pharmacol 64:919–930

    Google Scholar 

  • Ronald CD (1997) Spray drying: innovative use of an old process. Des Elem 7:97–113

    Google Scholar 

  • Rosenberg J, Reinhold U, Liepold B, Breitenbach J, Alani LL, Ghosh S (2008) US Patent 2008/0299203 A1. Dec. 4th, 2008

    Google Scholar 

  • Shi Y, Gao P, Gong Y, Ping H (2010) Application of a biphasic test for characterization of in vitro drug release of immediate release formulations of Celecoxib and its relevance to in vivo absorption. Mol Pharm 7:1458–1465

    Article  PubMed  CAS  Google Scholar 

  • Shoyele SA, Cawthorne S (2006) Particle engineering techniques for inhaled biopharmaceuticals. Adv Drug Deliv Rev 58:1009–1029

    Article  PubMed  CAS  Google Scholar 

  • Smithey D, Fennewald J, Gautschi J, Crew M, Ali S, Lan Y, Langley N (2010) Evaluation of the polymer Soluplus® for spray-dried dispersions of poorly soluble compounds, AAPS 2010, Poster R6081

    Google Scholar 

  • Taupitz T, Dressman JB, Klein S (2013) In vitro tools for evaluating novel dosage forms of poorly soluble, weakly basic drugs: case example of ketoconazole. J Pharm Sci (Epub ahead of print)

    Google Scholar 

  • Uddin R, Saffoon N, Bishwajit SK (2011) Dissolution and dissolution apparatus: a review. Int J Cur Biomed Phar Res 1:201–207

    Google Scholar 

  • US Department of Health and Human Services, Food and Drug Administration, Center for Drug Evaluation and Research (CDER) (1997) Guidance for industry, dissolution testing of immediate release solid oral dosage forms, August 1997

    Google Scholar 

  • US Department of Health and Human Services, Food and Drug Administration, Center for Drug Evaluation and Research (CDER) (2000) Guidance for industry, waiver of in vivo bioavailability and bioequivalence studies for immediate-release solid oral dosage forms based on a biopharmaceutics classification system, August 2000

    Google Scholar 

  • Waterbeemd H van de, Gifford E (2003) ADMET in silico modelling: towards prediction paradise? Nat Rev Drug Disc 2:192–204

    Article  Google Scholar 

  • Vehring R (2008) Pharmaceutical particle engineering via spray drying. Pharm Res 25:999–1022

    Article  PubMed  CAS  Google Scholar 

  • Yu L (2001) Amorphous pharmaceutical solids: preparation, characterization, and stabilization. Adv Drug Deliv Rev 48:27–42

    Article  PubMed  CAS  Google Scholar 

  • Zhang Q, Gladden L, Avalle P, Mantle M (2011) In vitro quantitative 1H and 19F nuclear magnetic resonance spectroscopy and imaging studies of fluvastatinâ„¢ in Lescol® XL tablets in a USP-IV dissolution cell. J Control Release 156:345–354

    Article  PubMed  CAS  Google Scholar 

  • Zhao P, Zhang L, Crillo JA, Liu Q, Bullock JM, Moon YJ, Song P, Crar SS, Madabushi R, Wu TC, Booth BP, Rahman NA, Reynolds KS, Gil Berglund E, Lesko LJ, Huang S-M (2011) Applications of physiologically based pharmacokinetic (PBPK) modeling and simulation during regulatory review. Clin Pharmacol Ther 89:259–267

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The author would like to thank the following individuals and organizations: Marshall Crew, Dan Smithey, and James Fennewald at Agere Pharmaceuticals, Inc. for contributions to the in vitro drug speciation dissolution studies, and Shaukat Ali and Nigel Langley at BASF for the generous samples of Soluplus® polymeric excipient.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeff T. Gautschi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 American Association of Pharmaceutical Scientists

About this chapter

Cite this chapter

Gautschi, J. (2013). Nonsink In Vitro Dissolution Testing of Amorphous Solid Dispersions. In: Repka, M., Langley, N., DiNunzio, J. (eds) Melt Extrusion. AAPS Advances in the Pharmaceutical Sciences Series, vol 9. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8432-5_8

Download citation

Publish with us

Policies and ethics