Melt Extrusion pp 243-260 | Cite as

Melt Extruded Controlled Release Dosage Forms

Part of the AAPS Advances in the Pharmaceutical Sciences Series book series (AAPS, volume 9)


Hot-melt extrusion is a proven pharmaceutical processing technology, enabling the formation of matrices and structures designed to control drug release. Controlled drug release formulations are important for reducing side effects, improving bioavailability, and patient compliance. Melt extrusion has been applied in the production of various controlled-release dosage forms: including pellets, tablets, films, and drug reservoirs. Controlled-release dosage forms prepared by extrusion have been demonstrated for oral delivery as well as in producing implants and transmucosal devices. This chapter reviews extruded controlled-release dosage forms, highlighting the importance of material properties and structure. The mechanisms by which drugs are released from different materials and structures are reviewed using examples from current literature.


Drug Release Dosage Form Matrix Tablet Drug Release Rate Lipid Matrix 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Almeida A, Possemiers S, Boone MN, De Beer T, Quinten T, Van Hoorebeke L, Remon JP, Vervaet C (2011) Ethylene vinyl acetate as matrix for oral sustained release dosage forms produced via hot-melt extrusion. Eur J Pharm Biopharm 77(2):297–305. doi:10.1016/j.ejpb.2010.12.004PubMedCrossRefGoogle Scholar
  2. Baker R (1987) Controlled release of biologically active agents. Wiley, New YorkGoogle Scholar
  3. Barkin RL, Bruckenthal P, Stanos SP (2012) Strategies to reduce the tampering and subsequent abuse of long-acting opioids: potential risks and benefits of formulations with physical or pharmacologic deterrents to tampering. Mayo Clin Proc 87(7):683–694PubMedCrossRefGoogle Scholar
  4. Breitenbach J (2002) Melt extrusion: from process to drug delivery technology. Eur J Pharm Biopharm 54(2):107–117. doi: 10.1016/s0939–6411(02)00061–9PubMedCrossRefGoogle Scholar
  5. Bruce LD, Shah NH, Waseem Malick A, Infeld MH, McGinity JW (2005) Properties of hot-melt extruded tablet formulations for the colonic delivery of 5-aminosalicylic acid. Eur J Pharm Biopharm 59(1):85–97. doi:10.1016/j.ejpb.2004.06.007PubMedCrossRefGoogle Scholar
  6. Campbell K, Craig D, McNally T (2010) Ibuprofen-loaded poly(Ε-Caprolactone) layered silicate nanocomposites prepared by hot melt extrusion. J Mater Sci: Mater Med 21(8):2307–2316. doi:10.1007/s10856-009-3963-2CrossRefGoogle Scholar
  7. Cheng L, Lei L, Guo S (2010) In vitro and in vivo evaluation of praziquantel loaded implants based on Peg/Pcl Blends. Int J Pharm 387(1–2):129–138. doi:10.1016/j.ijpharm.2009.12.010PubMedCrossRefGoogle Scholar
  8. Clark M, Kiser P, Loxley A, McConville C, Malcolm R, Friend D (2011) Pharmacokinetics of Uc781-loaded intravaginal ring segments in rabbits: a comparison of polymer matrices. Drug Deliv Transl Res 1(3):238–246. doi:10.1007/s13346–011-0032–4CrossRefGoogle Scholar
  9. Crowley MM, Schroeder B, Fredersdorf A, Obara S, Talarico M, Kucera S, McGinity JW (2004a) Physicochemical properties and mechanism of drug release from ethyl cellulose matrix tablets prepared by direct compression and hot-melt extrusion. Int J Pharm 269(2):509–522. doi:10.1016/j.ijpharm.2003.09.037CrossRefGoogle Scholar
  10. Crowley MM, Fredersdorf A, Schroeder B, Kucera S, Prodduturi S, Repka MA, McGinity JW (2004b) The influence of guaifenesin and ketoprofen on the properties of hot-melt extruded polyethylene oxide films. Eur J Pharm Sci 22(5):409–418. doi:10.1016/j.ejps.2004.04.005CrossRefGoogle Scholar
  11. Crowley MM, Zhang F, Repka MA, Thumma S, Upadhye SB, Kumar Battu S, McGinity JW, Martin C (2007) Pharmaceutical applications of hot-melt extrusion: Part I. Drug Dev Ind Pharm 33(9):909–926. doi:10.1080/03639040701498759PubMedCrossRefGoogle Scholar
  12. De Brabander C, Vervaet C, Remon JP (2003) Development and evaluation of sustained release mini-matrices prepared via hot melt extrusion. J Control Release 89(2):235–247. doi:10.1016/s0168–3659(03)00075–0PubMedCrossRefGoogle Scholar
  13. Dierickx L, Saerens L, Almeida A, De Beer T, Remon JP, Vervaet C (2012) Co-extrusion as manufacturing technique for fixed-dose combination mini-matrices. Eur J Pharm Biopharm 81(3):683–689. doi:10.1016/j.ejpb.2012.03.018PubMedCrossRefGoogle Scholar
  14. Dokoumetzidis A, Macheras P (2006) A century of dissolution research: from Noyes and Whitney to the biopharmaceutics classification system. Int J Pharm 321(1–2):1–11. doi:10.1016/j.ijpharm.2006.07.011PubMedCrossRefGoogle Scholar
  15. Fukuda M, Peppas NA, McGinity JW (2006a) Floating hot-melt extruded tablets for gastroretentive controlled drug release system. J Control Release 115(2):121–129CrossRefGoogle Scholar
  16. Fukuda M, Peppas NA, McGinity JW (2006b) Properties of sustained release hot-melt extruded tablets containing chitosan and xanthan gum. Int J Pharm 310(1–2):90–100. doi:10.1016/j.ijpharm.2005.11.042CrossRefGoogle Scholar
  17. Groenewegen RJJ (1999) Drug delivery system for two or more active substances. United States Patent 5989581Google Scholar
  18. Hoffman AS (2008) The origins and evolution of “Controlled” drug delivery systems. J Control Release 132(3):153–163. doi:10.1016/j.jconrel.2008.08.012PubMedCrossRefGoogle Scholar
  19. Janssens S, Van den Mooter G (2009) Review: physical chemistry of solid dispersions. J Pharm Pharmacol 61(12):1571–1586. doi:10.1211/jpp.61.12.0001PubMedCrossRefGoogle Scholar
  20. Joshi SC (2011) Sol-gel behavior of hydroxypropyl methylcellulose (Hpmc) in ionic media including drug release. Materials 4(10):1861–1905CrossRefGoogle Scholar
  21. Kaunisto E, Marucci M, Borgquist P, Axelsson A (2011) Mechanistic modelling of drug release from polymer-coated and swelling and dissolving polymer matrix systems. Int J Pharm 418(1):54–77. doi:10.1016/j.ijpharm.2011.01.021PubMedCrossRefGoogle Scholar
  22. Kidokoro M, Shah N, Malick A, Infeld M, McGinity J (2001) Properties of tablets containing granulations of ibuprofen and an acrylic copolymer prepared by thermal processes. Pharm Dev Technol 6(2):263PubMedCrossRefGoogle Scholar
  23. Li C, Cheng L, Zhang Y, Guo S, Wu W (2010) Effects of implant diameter, drug loading and end-capping on praziquantel release from Pcl implants. Int J Pharm 386(1–2):23–29. doi:10.1016/j.ijpharm.2009.10.046PubMedCrossRefGoogle Scholar
  24. Liu J, Zhang F, McGinity JW (2001) Properties of lipophilic matrix tablets containing phenylpropanolamine hydrochloride prepared by hot-melt extrusion. Eur J Pharm Biopharm 52(2):181–190PubMedCrossRefGoogle Scholar
  25. McGinity JW, Zhang F (2002) Hot-melt extrudable pharmaceutical formulation. United States Patent US6,488,963B1Google Scholar
  26. McGinity JW, Zhang F (2003) Melt-extruded controlled-release dosage forms. In: Ghebre-Sellassie I, Martin C (eds) Pharmaceutical extrusion technology, vol 133. Marcel Dekker, New YorkGoogle Scholar
  27. Murthy KS, Ghebre-Sellassie I (1993) Current perspectives on the dissolution stability of solid oral dosage forms. J Pharm Sci 82(2):113–126. doi:10.1002/jps.2600820202PubMedCrossRefGoogle Scholar
  28. Nakamichi K, Yasuura H, Fukui H, Oka M, Izumi S (2001) Evaluation of a floating dosage form of nicardipine hydrochloride and hydroxypropylmethylcellulose acetate succinate prepared using a twin-screw extruder. Int J Pharm 218(1–2):103–112. doi:10.1016/s0378–5173(01)00617–2PubMedCrossRefGoogle Scholar
  29. Nel A, Smythe S, Young K, Malcolm K, McCoy C, Rosenberg Z, Romano J (2009) Safety and pharmacokinetics of dapivirine delivery from matrix and reservoir intravaginal rings to HIV-negative women. J Acquir Immune Defic Syndr Hum Retrovirol 51(4):416–423CrossRefGoogle Scholar
  30. Newman A, Knipp G, Zografi G (2012) Assessing the performance of amorphous solid dispersions. J Pharm Sci 101(4):1355–1377. doi:10.1002/jps.23031PubMedCrossRefGoogle Scholar
  31. O’Driscoll CM, Griffin BT (2008) Biopharmaceutical challenges associated with drugs with low aqueous solubility—the potential impact of lipid-based formulations. Adv Drug Deliv Rev 60(6):617–624. doi:10.1016/j.addr.2007.10.012PubMedCrossRefGoogle Scholar
  32. Prodduturi S, Manek RV, Kolling WM, Stodghill SP, Repka MA (2005) Solid-state stability and characterization of hot-melt extruded poly(ethylene oxide) films. J Pharm Sci 94(10):2232–2245. doi:10.1002/jps.20437PubMedCrossRefGoogle Scholar
  33. Quinten T, De Beer T, Onofre FO, Mendez-Montealvo G, Wang YJ, Remon JP, Vervaet C (2011) Sustained-release and swelling characteristics of xanthan gum/ethylcellulose-based injection moulded matrix tablets: in vitro and in vivo evaluation. J Pharm Sci 100(7):2858–2870. doi:10.1002/jps.22480PubMedCrossRefGoogle Scholar
  34. Reitz C, Kleinebudde P (2007) Solid lipid extrusion of sustained release dosage forms. Eur J Pharm Biopharm 67(2):440–448PubMedCrossRefGoogle Scholar
  35. Reitz C, Strachan C, Kleinebudde P (2008) Solid lipid extrudates as sustained-release matrices: the effect of surface structure on drug release properties. Eur J Pharm Sci 35(4):335–343. doi: 10.1016/j.ejps.2008.08.002PubMedCrossRefGoogle Scholar
  36. Repka MA, McGinity JW (2000) Influence of Vitamin E Tpgs on the properties of hydrophilic films produced by hot-melt extrusion. Int J Pharm 202(1–2):63–70. doi:10.1016/s0378–5173(00)00418-xPubMedCrossRefGoogle Scholar
  37. Repka MA, McGinity JW (2001) Bioadhesive properties of hydroxypropylcellulose topical films produced by hot-melt extrusion. J Control Release 70(3):341–351. doi:10.1016/s0168–3659(00)00365–5PubMedCrossRefGoogle Scholar
  38. Repka MA, Gutta K, Prodduturi S, Munjal M, Stodghill SP (2005) Characterization of cellulosic hot-melt extruded films containing lidocaine. Eur J Pharm Biopharm 59(1):189–196. doi:10.1016/j.ejpb.2004.06.008PubMedCrossRefGoogle Scholar
  39. Repka MA, Battu SK, Upadhye SB, Thumma S, Crowley MM, Zhang F, Martin C, McGinity JW (2007) Pharmaceutical applications of hot-melt extrusion: part II. Drug Dev Ind Pharm 33(10):1043–1057. doi:10.1080/03639040701525627PubMedCrossRefGoogle Scholar
  40. Sackett CK, Narasimhan B (2011) Mathematical modeling of polymer erosion: consequences for drug delivery. Int J Pharm 418(1):104–114. doi:10.1016/j.ijpharm.2010.11.048PubMedCrossRefGoogle Scholar
  41. Sauer D, Zheng W, Coots LB, McGinity JW (2007) Influence of processing parameters and formulation factors on the drug release from tablets powder-coated with Eudragit® L 100–55. Eur J Pharm Biopharm 67(2):464–475PubMedCrossRefGoogle Scholar
  42. Sax G, Feil F, Schulze S, Jung C, Bräuchle C, Winter G (2012) Release pathways of interferon Α2a molecules from lipid twin screw extrudates revealed by single molecule fluorescence microscopy. J Control Release 162(2):295–302. doi:10.1016/j.jconrel.2012.07.014PubMedCrossRefGoogle Scholar
  43. Schilling SU, Bruce CD, Shah NH, Malick AW, McGinity JW (2008) Citric acid monohydrate as a release-modifying agent in melt extruded matrix tablets. Int J Pharm 361(1–2):158–168. doi:10.1016/j.ijpharm.2008.05.035PubMedCrossRefGoogle Scholar
  44. Schulze S, Winter G (2009) Lipid extrudates as novel sustained release systems for pharmaceutical proteins. J Control Release 134(3):177–185. doi:10.1016/j.jconrel.2008.11.026PubMedCrossRefGoogle Scholar
  45. Siepmann J, Peppas NA (2001) Modeling of drug release from delivery systems based on hydroxypropyl methylcellulose (Hpmc). Adv Drug Deliv Rev 48(2–3):139–157. doi:10.1016/s0169-409×(01)00112-0PubMedCrossRefGoogle Scholar
  46. Siepmann J, Peppas NA (2011) Higuchi equation: derivation, applications, use and misuse. Int J Pharm 418(1):6–12. doi:10.1016/j.ijpharm.2011.03.051PubMedCrossRefGoogle Scholar
  47. Siepmann J, Siepmann F (2008) Mathematical modeling of drug delivery. Int J Pharm 364(2):328–343. doi:10.1016/j.ijpharm.2008.09.004PubMedCrossRefGoogle Scholar
  48. Streubel A, Siepmann J, Bodmeier R (2006) Drug delivery to the upper small intestine window using gastroretentive technologies. Curr Opin Pharmacol 6(5):501–508. doi:10.1016/j.coph.2006.04.007PubMedCrossRefGoogle Scholar
  49. Terife G, Wang P, Faridi N, Gogos CG (2012) Hot melt mixing and foaming of Soluplus® and Indomethacin. Polym EngSci 52(8):1629–1639. doi:10.1002/pen.23106CrossRefGoogle Scholar
  50. Tran P, Tran T, Park J, Lee B-J (2011) Controlled release systems containing solid dispersions: strategies and mechanisms. Pharm Res 28(10):2353–2378. doi:10.1007/s11095-011-0449-yPubMedCrossRefGoogle Scholar
  51. Uhrich KE, Cannizzaro SM, Langer RS, Shakesheff KM (1999) Polymeric systems for controlled drug release. Chem Rev 99(11):3181–3198. doi:10.1021/cr940351uPubMedCrossRefGoogle Scholar
  52. van Laarhoven JAH, Kruft MAB, Vromans H (2002) In vitro release properties of etonogestrel and ethinyl estradiol from a contraceptive vaginal ring. Int J Pharm 232(1–2):163–173. doi:10.1016/s0378-5173(01)00900-0PubMedCrossRefGoogle Scholar
  53. Verhoeven E, Vervaet C, Remon JP (2006) Xanthan Gum to Tailor Drug Release of Sustained-Release Ethylcellulose Mini-Matrices Prepared Via Hot-Melt Extrusion: In Vitro and in Vivo Evaluation. Eur J Pharm Biopharm 63 (3):320–330. doi:10.1016/j.ejpb.2005.12.004PubMedCrossRefGoogle Scholar
  54. Windbergs M, Strachan CJ, Kleinebudde P (2009) Understanding the solid-state behaviour of triglyceride solid lipid extrudates and its influence on dissolution. Eur J Pharm Biopharm 71(1):80–87PubMedCrossRefGoogle Scholar
  55. Young CR, Koleng JJ, McGinity JW (2002) Production of spherical pellets by a hot-melt extrusion and spheronization process. Int J Pharm 242(1–2):87–92. doi:10.1016/s0378–5173(02)00152–7PubMedCrossRefGoogle Scholar
  56. Young CR, Koleng JJ, McGinity JW (2003) Properties of drug-containing spherical pellets produced by a hot-melt extrusion and spheronization process. J Microencapsul 20(5):613–625. doi:10.3109/02652040309178350PubMedGoogle Scholar
  57. Young CR, Dietzsch C, Cerea M, Farrell T, Fegely KA, Rajabi-Siahboomi A, McGinity JW (2005) Physicochemical characterization and mechanisms of release of theophylline from melt-extruded dosage forms based on a methacrylic acid copolymer. Int J Pharm 301(1–2):112–120. doi:10.1016/j.ijpharm.2005.05.025PubMedCrossRefGoogle Scholar
  58. Yu L (2008) Pharmaceutical quality by design: product and process development, understanding, and control. Pharm Res 25(4):781–791. doi:10.1007/s11095-007-9511-1PubMedCrossRefGoogle Scholar
  59. Zhang F, McGinity J (1999) Properties of sustained-release tablets prepared by hot-melt extrusion. Pharm Dev Technol 4(2):241PubMedCrossRefGoogle Scholar
  60. Zhu Y, Shah N, Malick A, Infeld M, McGinity J (2002) Influence of thermal processing on the properties of chlorpheniramine maleate tablets containing an acrylic polymer. Pharm Dev Technol 7(4):481PubMedCrossRefGoogle Scholar

Copyright information

© American Association of Pharmaceutical Scientists 2013

Authors and Affiliations

  1. 1.The University of Texas at AustinAustinUSA
  2. 2.DisperSol Technologies, LLCGeorgetownUSA

Personalised recommendations