Skip to main content

Stuttered Birdsong

  • Chapter
  • First Online:

Abstract

Birdsong is analogous to speech in terms of its role in communication, vocal motor control, auditory perception, and development. Songbirds such as zebra finches can therefore be used to model speech motor control disorders. In this chapter, we describe our efforts at developing a variant form of zebra finch song containing syllable repetitions that resemble part-word repetitions of developmental stuttering. We further discuss functional magnetic resonance imaging experiments that reveal changes in neural activations produced by song stimuli in syllable repeater birds. Finally, we present findings and review data to propose that synaptic plasticity and neuromodulatory mechanisms might play a role in the development of repetitive or oscillatory vocal output.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Porfert A, Rosenfield D (1978) Prevalence of stuttering. J Neurol Neurosurg Psychiatry 41(10):954–956

    Article  CAS  PubMed  Google Scholar 

  2. Bloodstein O (1995) A handbook on stuttering. Singular, San Diego

    Google Scholar 

  3. Nudelman HB, Herberich KE, Hoyt BD, Rosenfield DB (1989) A neuroscience model of stuttering. J Fluency Disord 14:399–427

    Article  Google Scholar 

  4. Nudelman H, Herbrich K, Hess K, Hoyt B, Rosenfield D (1992) A model of the phonatory response time of stutterers and fluent speakers to frequency-modulated tones. J Acoust Soc Am 92(4 Pt 1):1882–1888

    Article  CAS  PubMed  Google Scholar 

  5. Rosenfield DB (2013) Disorders of fluency and voice. In: Whitaker H (ed) International encyclopedia of the social and behavioral sciences, 2nd edn. American Elsevier, New York

    Google Scholar 

  6. Timmons B (1982) Physiological factors related to delayed auditory feedback and stuttering: a review. Percept Mot Skills 55(3 Pt 2):1179–1189

    Article  CAS  PubMed  Google Scholar 

  7. Leonardo A, Konishi M (1999) Decrystallization of adult birdsong by perturbation of auditory feedback. Nature 399(6735):466–470

    Article  CAS  PubMed  Google Scholar 

  8. Immelmann K (1969) Song development in the zebra finch and other estrildid finches. In: Hinde RA (ed) Bird vocalizations. Cambridge University Press, Cambridge, pp 61–77

    Google Scholar 

  9. Doupe AJ, Kuhl PK (1999) Birdsong and human speech: common themes and mechanisms. Annu Rev Neurosci 22:567–631

    Article  CAS  PubMed  Google Scholar 

  10. Sossinka R, Bohner J (1980) Song types in the zebra finch Poephilia guttata castanotis. Z Tierpsychol 53:123–132

    Google Scholar 

  11. Sturdy CB, Phillmore LS, Weisman RG (1999) Note types, harmonic structure, and note order in the songs of zebra finches (Taeniopygia guttata). J Comp Psychol 113:194–203

    Article  Google Scholar 

  12. Helekar SA, Marsh S, Viswanath NS, Rosenfield DB (2000) Acoustic pattern variations in the female-directed birdsongs of a colony of laboratory-bred zebra finches. Behav Processes 49(2):99–110

    Article  PubMed  Google Scholar 

  13. Tchernichovski O, Lints T, Mitra PP, Nottebohm F (1999) Vocal imitation in zebra finches is inversely related to model abundance. Proc Natl Acad Sci U S A 96(22):12901–12904

    Article  CAS  PubMed  Google Scholar 

  14. Cooper BG, Goller F (2004) Partial muting leads to age-dependent modification of motor patterns underlying crystallized zebra finch song. J Neurobiol 61(3):317–332

    Article  PubMed  Google Scholar 

  15. Horita H, Wada K, Jarvis ED (2008) Early onset of deafening-induced song deterioration and differential requirements of the pallial-basal ganglia vocal pathway. Eur J Neurosci 28(12):2519–2532

    Article  PubMed  Google Scholar 

  16. Helekar SA, Espino GG, Botas A, Rosenfield DB (2003) Development and adult phase plasticity of syllable repetitions in the birdsong of captive zebra finches (Taeniopygia guttata). Behav Neurosci 117(5):939–951

    Article  CAS  PubMed  Google Scholar 

  17. Tchernichovski O, Nottebohm F, Ho CE, Pesaran B, Mitra PP (2000) A procedure for an automated measurement of song similarity. Anim Behav 59(6):1167–1176

    Article  PubMed  Google Scholar 

  18. Brainard M, Doupe A (2000) Interruption of a basal ganglia-forebrain circuit prevents plasticity of learned vocalizations. Nature 404(6779):762–766

    Article  CAS  PubMed  Google Scholar 

  19. Huettel SA, Song AW, McCarthy G (2008) Functional magnetic resonance imaging, 2nd edn. Sinauer, Sunderland

    Google Scholar 

  20. Voss HU, Tabelow K, Polzehl J, Tchernichovski O, Maul KK, Salgado-Commissariat D et al (2007) Functional MRI of the zebra finch brain during song stimulation suggests a lateralized response topography. Proc Natl Acad Sci U S A 104(25):10667–10672

    Article  CAS  PubMed  Google Scholar 

  21. Van Meir V, Boumans T, De Groof G, Verhoye M, Van Audekerke J, Van der Linden A (2003) Functional magnetic resonance imaging of the songbird brain when listening to songs. In: 2003 Neuroscience Meeting Planner Online ed. Society for Neuroscience, Washington, DC

    Google Scholar 

  22. Van Meir V, Boumans T, De Groof G, Van Audekerke J, Smolders A, Scheunders P et al (2005) Spatiotemporal properties of the BOLD response in the songbirds’ auditory circuit during a variety of listening tasks. Neuroimage 25(4):1242–1255

    Article  PubMed  Google Scholar 

  23. Lipkind D, Tchernichovski O (2011) Quantification of developmental birdsong learning from the subsyllabic scale to cultural evolution. Proc Natl Acad Sci U S A 108(suppl 3):15572–15579

    Article  CAS  PubMed  Google Scholar 

  24. Maul KK, Voss HU, Parra LC, Salgado-Commissariat D, Ballon D, Tchernichovski O et al (2010) The development of stimulus-specific auditory responses requires song exposure in male but not female zebra finches. Dev Neurobiol 70(1):28–40

    PubMed  Google Scholar 

  25. Boumans T, Vignal C, Ramstein S, Verhoye M, Van Audekerke J, Mottin S et al (2005) Detection of haemodynamic changes in zebra finch brain by optical and functional magnetic resonance imaging. J Cereb Blood Flow Metab 25:S388

    Article  Google Scholar 

  26. Vignal C, Boumans T, Montcel B, Ramstein S, Verhoye M, Van Audekerke J et al (2008) Measuring brain hemodynamic changes in a songbird: responses to hypercapnia measured with functional MRI and near-infrared spectroscopy. Phys Med Biol 53(10):2457–2470

    Article  CAS  PubMed  Google Scholar 

  27. Keary N, Voss J, Lehmann K, Bischof HJ, Lowel S (2010) Optical imaging of retinotopic maps in a small songbird, the zebra finch. PLoS One 5(8):e11912

    Article  PubMed  Google Scholar 

  28. Mottin S, Montcel B, de Chatellus HG, Ramstein S (2011) Functional white-laser imaging to study brain oxygen uncoupling/recoupling in songbirds. J Cereb Blood Flow Metab 31(2):393–400

    Article  CAS  PubMed  Google Scholar 

  29. Abi-Haidar D, Olivier T (2009) Confocal reflectance and two-photon microscopy studies of a songbird skull for preparation of transcranial imaging. J Biomed Opt 14(3):034038

    Article  PubMed  Google Scholar 

  30. Ramstein S, Vignal C, Mathevon N, Mottin S (2005) In vivo and noninvasive measurement of a songbird head’s optical properties. Appl Optics 44(29):6197–6204

    Article  CAS  Google Scholar 

  31. Boumans T, Vignal C, Smolders A, Sijbers J, Verhoye M, Van Audekerke J et al (2008) Functional magnetic resonance imaging in zebra finch discerns the neural substrate involved in segregation of conspecific song from background noise. J Neurophysiol 99(2):931–938

    Article  PubMed  Google Scholar 

  32. Voss HU, Salgado-Commissariat D, Helekar SA (2010) Altered auditory BOLD response to conspecific birdsong in zebra finches with stuttered syllables. PLoS One 5(12):e14415

    Article  CAS  PubMed  Google Scholar 

  33. Boumans T, Gobes SM, Poirier C, Theunissen FE, Vandersmissen L, Pintjens W et al (2008) Functional MRI of auditory responses in the zebra finch forebrain reveals a hierarchical organisation based on signal strength but not selectivity. PLoS One 3(9):e3184

    Article  PubMed  Google Scholar 

  34. Boumans T, Theunissen FE, Poirier C, Van der Linden A (2007) Neural representation of spectral and temporal features of song in the auditory forebrain of zebra finches as revealed by functional MRI. Eur J Neurosci 26(9):2613–2626

    Article  PubMed  Google Scholar 

  35. Poirier C, Boumans T, Verhoye M, Balthazart J, Van der Linden A (2009) Own-song recognition in the songbird auditory pathway: selectivity and lateralization. J Neurosci 29(7):2252–2258

    Article  CAS  PubMed  Google Scholar 

  36. Tindemans I, Verhoye M, Balthazart J, Van Der Linden A (2003) In vivo dynamic ME-MRI reveals differential functional responses of RA- and area X-projecting neurons in the HVC of canaries exposed to conspecific song. Eur J Neurosci 18(12):3352–3360

    Article  CAS  PubMed  Google Scholar 

  37. Van der Linden A, Verhoye M, Van Meir V, Tindemans I, Eens M, Absil P et al (2002) In vivo manganese-enhanced magnetic resonance imaging reveals connections and functional properties of the songbird vocal control system. Neuroscience 112(2):467–474

    Article  PubMed  Google Scholar 

  38. Poirier C, Boumans T, Vellema M, De Groof G, Charlier TD, Verhoye M et al (2011) Own song selectivity in the songbird auditory pathway: suppression by norepinephrine. PLoS One 6(5):e20131

    Article  CAS  PubMed  Google Scholar 

  39. De Nil LF, Kroll RM, Lafaille SJ, Houle S (2003) A positron emission tomography study of short- and long-term treatment effects on functional brain activation in adults who stutter. J Fluency Disord 28(4):357–379; quiz 79–80

    Article  PubMed  Google Scholar 

  40. Neumann K, Euler HA, von Gudenberg AW, Giraud AL, Lanfermann H, Gall V et al (2003) The nature and treatment of stuttering as revealed by fMRI A within- and between-group comparison. J Fluency Disord 28(4):381–409; quiz 409–410

    Article  PubMed  Google Scholar 

  41. Cynx J, Williams H, Nottebohm F (1992) Hemispheric differences in avian song discrimination. Proc Natl Acad Sci U S A 89(4):1372–1375

    Article  CAS  PubMed  Google Scholar 

  42. George I, Vernier B, Richard JP, Hausberger M, Cousillas H (2004) Hemispheric specialization in the primary auditory area of awake and anesthetized starlings (Sturnus vulgaris). Behav Neurosci 118(3):597–610

    Article  PubMed  Google Scholar 

  43. George I, Cousillas H, Richard JP, Hausberger M (2005) State-dependent hemispheric specialization in the songbird brain. J Comp Neurol 488(1):48–60

    Article  PubMed  Google Scholar 

  44. Phan ML, Vicario DS (2010) Hemispheric differences in processing of vocalizations depend on early experience. Proc Natl Acad Sci U S A 107(5):2301–2306

    Article  CAS  PubMed  Google Scholar 

  45. Remage-Healey L, Coleman MJ, Oyama RK, Schlinger BA (2010) Brain estrogens rapidly strengthen auditory encoding and guide song preference in a songbird. Proc Natl Acad Sci U S A 107(8):3852–3857

    Article  CAS  PubMed  Google Scholar 

  46. Espino GG, Lewis C, Rosenfield DB, Helekar SA (2003) Modulation of theta/alpha frequency profiles of slow auditory-evoked responses in the songbird zebra finch. Neuroscience 122(2):521–529

    Article  CAS  PubMed  Google Scholar 

  47. Bolhuis JJ, Zijlstra GG, den Boer-Visser AM, Van Der Zee EA (2000) Localized neuronal activation in the zebra finch brain is related to the strength of song learning. Proc Natl Acad Sci U S A 97(5):2282–2285

    Article  CAS  PubMed  Google Scholar 

  48. Bolhuis JJ, Hetebrij E, Den Boer-Visser AM, De Groot JH, Zijlstra GG (2001) Localized immediate early gene expression related to the strength of song learning in socially reared zebra finches. Eur J Neurosci 13(11):2165–2170

    Article  CAS  PubMed  Google Scholar 

  49. Phan ML, Pytte CL, Vicario DS (2006) Early auditory experience generates long-lasting memories that may subserve vocal learning in songbirds. Proc Natl Acad Sci U S A 103(4):1088–1093

    Article  CAS  PubMed  Google Scholar 

  50. Pinaud R, Terleph TA, Tremere LA, Phan ML, Dagostin AA, Leao RM et al (2008) Inhibitory network interactions shape the auditory processing of natural communication signals in the songbird auditory forebrain. J Neurophysiol 100(1):441–455

    Article  PubMed  Google Scholar 

  51. Northoff G, Walter M, Schulte RF, Beck J, Dydak U, Henning A et al (2007) GABA concentrations in the human anterior cingulate cortex predict negative BOLD responses in fMRI. Nat Neurosci 10(12):1515–1517

    Article  CAS  PubMed  Google Scholar 

  52. Logothetis NK (2003) The underpinnings of the BOLD functional magnetic resonance imaging signal. J Neurosci 23(10):3963–3971

    CAS  PubMed  Google Scholar 

  53. Lee JH, Durand R, Gradinaru V, Zhang F, Goshen I, Kim DS et al (2010) Global and local fMRI signals driven by neurons defined optogenetically by type and wiring. Nature 465(7299):788–792

    Article  CAS  PubMed  Google Scholar 

  54. Liotti M, Ingham JC, Takai O, Paskos DK, Perez R, Ingham RJ (2010) Spatiotemporal dynamics of speech sound perception in chronic developmental stuttering. Brain Lang 115(2):141–147

    Article  PubMed  Google Scholar 

  55. De Nil LF, Beal DS, Lafaille SJ, Kroll RM, Crawley AP, Gracco VL (2008) The effects of simulated stuttering and prolonged speech on the neural activation patterns of stuttering and nonstuttering adults. Brain Lang 107(2):114–123

    Article  PubMed  Google Scholar 

  56. Watkins KE, Smith SM, Davis S, Howell P (2008) Structural and functional abnormalities of the motor system in developmental stuttering. Brain 131(Pt 1):50–59

    PubMed  Google Scholar 

  57. Chang SE, Kenney MK, Loucks TM, Ludlow CL (2009) Brain activation abnormalities during speech and non-speech in stuttering speakers. Neuroimage 46(1):201–212

    Article  PubMed  Google Scholar 

  58. Brown S, Ingham RJ, Ingham JC, Laird AR, Fox PT (2005) Stuttered and fluent speech production: an ALE meta-analysis of functional neuroimaging studies. Hum Brain Mapp 25(1):105–117

    Article  PubMed  Google Scholar 

  59. Fox PT, Ingham RJ, Ingham JC, Zamarripa F, Xiong JH, Lancaster JL (2000) Brain correlates of stuttering and syllable production. A PET performance-correlation analysis. Brain 123(Pt 10):1985–2004

    Article  PubMed  Google Scholar 

  60. Braun AR, Varga M, Stager S, Schulz G, Selbie S, Maisog JM et al (1997) Altered patterns of cerebral activity during speech and language production in developmental stuttering. An H2(15)O positron emission tomography study. Brain 120(Pt 5):761–784

    Article  PubMed  Google Scholar 

  61. De Nil LF, Kroll RM, Kapur S, Houle S (2000) A positron emission tomography study of silent and oral single word reading in stuttering and nonstuttering adults. J Speech Lang Hear Res 43(4):1038–1053

    PubMed  Google Scholar 

  62. Fox PT, Ingham RJ, Ingham JC, Hirsch TB, Downs JH, Martin C et al (1996) A PET study of the neural systems of stuttering. Nature 382(6587):158–161

    Article  CAS  PubMed  Google Scholar 

  63. Neumann K, Preibisch C, Euler HA, von Gudenberg AW, Lanfermann H, Gall V et al (2005) Cortical plasticity associated with stuttering therapy. J Fluency Disord 30(1):23–39

    Article  PubMed  Google Scholar 

  64. Voss HU, Salgado-Commissariat D, Ballon D, Helekar SA (2007). Functional neuroimaging in the songbird zebra finch reveals plasticity of the auditory response based on song familiarity. In: IBRO World Congress of Neuroscience, Melbourne, Australia 2007

    Google Scholar 

  65. Goebel HH, Wisniewski KE (2004) Current state of clinical and morphological features in human NCL. Brain Pathol 14(1):61–69

    Article  CAS  PubMed  Google Scholar 

  66. Poirier C, Vellema M, Verhoye M, Van Meir V, Wild JM, Balthazart J et al (2008) A three-dimensional MRI atlas of the zebra finch brain in stereotaxic coordinates. Neuroimage 41(1):1–6

    Article  PubMed  Google Scholar 

  67. Friston KJ, Holmes AP, Worsley K, Poline JB, Frith CD, Frackowiak RSJ (1995) Statistical parametric maps in functional imaging: a general linear approach. Hum Brain Mapp 2:189–210

    Article  Google Scholar 

  68. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate—a practical and powerful approach to multiple testing. J R Stat Soc Series B Stat Methodol 57:289–300

    Google Scholar 

  69. Genovese CR, Lazar NA, Nichols T (2002) Thresholding of statistical maps in functional neuroimaging using the false discovery rate. Neuroimage 15(4):870–878

    Article  PubMed  Google Scholar 

  70. Boettiger CA, Doupe AJ (2001) Developmentally restricted synaptic plasticity in a songbird nucleus required for song learning. Neuron 31(5):809–818

    Article  CAS  PubMed  Google Scholar 

  71. Ding L, Perkel DJ (2004) Long-term potentiation in an avian basal ganglia nucleus essential for vocal learning. J Neurosci 24(2):488–494

    Article  CAS  PubMed  Google Scholar 

  72. Sizemore M, Perkel DJ (2011) Premotor synaptic plasticity limited to the critical period for song learning. Proc Natl Acad Sci U S A 108(42):17492–17497

    Article  CAS  PubMed  Google Scholar 

  73. Ryan S, Arnold A (1981) Evidence for cholinergic participation in the control of bird song; acetylcholinesterase distribution and muscarinic receptor autoradiography in the zebra finch brain. J Comp Neurol 202(2):211–219

    Article  CAS  PubMed  Google Scholar 

  74. Zuschratter W, Scheich H (1990) Distribution of choline acetyltransferase and acetylcholinesterase in the vocal motor system of zebra finches. Brain Res 513(2):193–201

    Article  CAS  PubMed  Google Scholar 

  75. Li R, Zuo M, Sakaguchi H (1999) Auditory-vocal cholinergic pathway in zebra finch brain. Neuroreport 10(1):165–169

    Article  CAS  PubMed  Google Scholar 

  76. Li R, Sakaguchi H (1997) Cholinergic innervation of the song control nuclei by the ventral paleostriatum in the zebra finch: a double-labeling study with retrograde fluorescent tracers and choline acetyltransferase immunohistochemistry. Brain Res 763(2):239–246

    Article  CAS  PubMed  Google Scholar 

  77. Sakaguchi H, Saito N (1991) Developmental change of cholinergic activity in the forebrain of the zebra finch during song learning. Brain Res Dev Brain Res 62(2):223–228

    Article  CAS  PubMed  Google Scholar 

  78. Sakaguchi H, Saito N (1989) The acetylcholine and catecholamine contents in song control nuclei of zebra finch during song ontogeny. Brain Res Dev Brain Res 47(2):313–317

    Article  CAS  PubMed  Google Scholar 

  79. Watson J, Adkins RE, Whiting P, Lindstrom J, Podleski T (1988) Autoradiographic localization of nicotinic acetylcholine receptors in the brain of the zebra finch (Poephila guttata). J Comp Neurol 274(2):255–264

    Article  CAS  PubMed  Google Scholar 

  80. Sakaguchi H, Li R, Taniguchi I (2000) Sex differences in the ventral paleostriatum of the zebra finch: origin of the cholinergic innervation of the song control nuclei. Neuroreport 11(12):2727–2731

    Article  CAS  PubMed  Google Scholar 

  81. Reiner A, Laverghetta AV, Meade CA, Cuthbertson SL, Bottjer SW (2004) An immunohistochemical and pathway tracing study of the striatopallidal organization of area X in the male zebra finch. J Comp Neurol 469(2):239–261

    Article  PubMed  Google Scholar 

  82. Shea SD, Margoliash D (2003) Basal forebrain cholinergic modulation of auditory activity in the zebra finch song system. Neuron 40(6):1213–1226

    Article  CAS  PubMed  Google Scholar 

  83. Salgado-Commissariat D, Rosenfield DB, Helekar SA (2004) Nicotine-mediated plasticity in robust nucleus of the archistriatum of the adult zebra finch. Brain Res 1018(1):97–105

    Article  CAS  PubMed  Google Scholar 

  84. Mooney R (1992) Synaptic basis for developmental plasticity in a birdsong nucleus. J Neurosci 12(7):2464–2477

    CAS  PubMed  Google Scholar 

  85. Mooney R, Konishi M (1991) Two distinct inputs to an avian song nucleus activate different glutamate receptor subtypes on individual neurons. Proc Natl Acad Sci U S A 88(10):4075–4079

    Article  CAS  PubMed  Google Scholar 

  86. Stark LL, Perkel DJ (1999) Two-stage, input-specific synaptic maturation in a nucleus essential for vocal production in the zebra finch. J Neurosci 19(20):9107–9116

    CAS  PubMed  Google Scholar 

  87. Fujii S, Ji Z, Morita N, Sumikawa K (1999) Acute and chronic nicotine exposure differentially facilitate the induction of LTP. Brain Res 846(1):137–143

    Article  CAS  PubMed  Google Scholar 

  88. Fujii S, Sumikawa K (2001) Nicotine accelerates reversal of long-term potentiation and enhances long-term depression in the rat hippocampal CA1 region. Brain Res 894(2):340–346

    Article  CAS  PubMed  Google Scholar 

  89. Alkondon M, Albuquerque EX (1993) Diversity of nicotinic acetylcholine receptors in rat hippocampal neurons. I. Pharmacological and functional evidence for distinct structural subtypes. J Pharmacol Exp Ther 265(3):1455–1473

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was funded by NIH grants DC04778-01A1 (SAH) and MH073900-01 (SAH), NSF grants IOS 0956306 (HUV) and IOS 1065678 (SAH), grants from M. R. Bauer Foundation (DBR) and Lowin Medical Research Foundation (DBR), and Weill Cornell Medical College—The Methodist Hospital Research Institute collaboration grants (HUV and SAH).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Santosh A. Helekar M.B.B.S., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Helekar, S.A., Salgado-Commissariat, D., Rosenfield, D.B., Voss, H.U. (2013). Stuttered Birdsong. In: Helekar, S. (eds) Animal Models of Speech and Language Disorders. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8400-4_7

Download citation

Publish with us

Policies and ethics