Ovarian Dysfunction in Polycystic Ovary Syndrome

Chapter

Abstract

The polycystic ovary (PCO) is defined by its increased size, the density and volume of the stroma, and the increased number of subcapsular follicles. This chapter details the current knowledge regarding the morphological and steroidogenic defects present in these ovaries. Although non-growing primordial follicle numbers in PCO appear normal, there is an increase in number once the follicles begin to grow. An overproduction of androgens by the ovarian theca cells of PCO is partly due to an increased expression and prolonged stability of messenger RNA coding for enzymes involved in steroidogenesis. Impairments in folliculogenesis and failure of dominant follicle selection underlie the ovulatory dysfunction commonly seen in PCOS. The mechanisms are unclear, but evidence suggests that in PCO, the follicles are prematurely luteinized, probably due to the combined effects of hyperinsulinemia and chronically elevated LH. Although a role for disordered levels of inhibitory polypeptide growth factors has not been confirmed, there is a new and emerging function for anti-Müllerian hormone in inhibition of follicle development. Within the growing ovarian follicles from an insulin-resistant woman with polycystic ovary syndrome, there is a divergence in insulin signalling such that the steroid synthesis pathway is sensitive to excess circulating insulin and responds with increased production of androgens and estrogens; in contrast, however, the insulin-stimulated glucose uptake pathway in PCO is resistant to actions of insulin. The latter paradox has implications for energy availability and metabolism, and affects both follicle growth and oocyte health in PCO.

Keywords

Estrogen Testosterone Pyruvate Progesterone Androgen 

References

  1. 1.
    Adams J, Franks S, Polson DW, Mason HD, Abdulwahid N, Tucker M, et al. Multifollicular ovaries: clinical endocrine features and response to pulsatile gonadotrophin releasing hormone. Lancet. 1985;2(8469–70):1375–9.PubMedCrossRefGoogle Scholar
  2. 2.
    Polson DW, Adams J, Wadsworth J, Franks S. Polycystic ovaries – a common finding in normal women. Lancet. 1988;1(8590):870–2.PubMedCrossRefGoogle Scholar
  3. 3.
    Joseph-Horne R, Mason H, Batty S, White D, Hillier S, Urquhart M, et al. Luteal phase progesterone excretion in ovulatory women with polycystic ovaries. Hum Reprod. 2002;17(6):1459–63.PubMedCrossRefGoogle Scholar
  4. 4.
    Franks S. Polycystic ovary syndrome: a changing perspective. Clin Endocrinol (Oxf). 1989;31(1):87–120.CrossRefGoogle Scholar
  5. 5.
    Franks S, Adams J, Mason H, Polson D. Ovulatory disorders in women with polycystic ovary syndrome. Clin Obstet Gynaecol. 1985;12(3):605–32.PubMedGoogle Scholar
  6. 6.
    Mason HD, Willis DS, Beard RW, Winston RM, Margara R, Franks S. Estradiol production by granulosa cells of normal and polycystic ovaries: relationship to menstrual cycle history and concentrations of gonadotropins and sex steroids in follicular fluid. J Clin Endocrinol Metab. 1994;79(5):1355–60.PubMedCrossRefGoogle Scholar
  7. 7.
    Erickson GF, Chung DG, Sit A, DePaolo LV, Shimasaki S, Ling N. Follistatin concentrations in follicular fluid of normal and polycystic ovaries. Hum Reprod. 1995;10(8):2120–4.PubMedGoogle Scholar
  8. 8.
    Giudice LC. Growth factor action on ovarian function in polycystic ovary syndrome. Endocrinol Metab Clin North Am. 1999;28(2):325–39.PubMedCrossRefGoogle Scholar
  9. 9.
    Dumesic DA, Schramm RD, Abbott DH. Early origins of polycystic ovary syndrome. Reprod Fertil Dev. 2005;17(3):349–60.PubMedCrossRefGoogle Scholar
  10. 10.
    Hogg K, Young JM, Oliver EM, Souza CJ, McNeilly AS, Duncan WC. Enhanced thecal androgen production is prenatally programmed in an ovine model of polycystic ovary syndrome. Endocrinology. 2012;153(1):450–61.PubMedCrossRefGoogle Scholar
  11. 11.
    Padmanabhan V, Veiga-Lopez A. Sheep models of polycystic ovary syndrome phenotype. Mol Cell Endocrinol. 2013;373(1–2):8–20.PubMedCrossRefGoogle Scholar
  12. 12.
    Hughesdon PE. Morphology and morphogenesis of the Stein-Leventhal ovary and of so-called "hyperthecosis". Obstet Gynecol Surv. 1982;37(2):59–77.PubMedCrossRefGoogle Scholar
  13. 13.
    McNatty KP. Hormonal correlates of follicular development in the human ovary. Aust J Biol Sci. 1981;34(3):249–68.PubMedGoogle Scholar
  14. 14.
    Gougeon A. Dynamics of follicular growth in the human: a model from preliminary results. Hum Reprod. 1986 Feb;1(2):81–7.PubMedGoogle Scholar
  15. 15.
    Webber LJ, Stubbs S, Stark J, Trew GH, Margara R, Hardy K, et al. Formation and early development of follicles in the polycystic ovary. Lancet. 2003;362(9389):1017–21.PubMedCrossRefGoogle Scholar
  16. 16.
    Maciel GA, Baracat EC, Benda JA, Markham SM, Hensinger K, Chang RJ, et al. Stockpiling of transitional and classic primary follicles in ovaries of women with polycystic ovary syndrome. J Clin Endocrinol Metab. 2004;89(11):5321–7.PubMedCrossRefGoogle Scholar
  17. 17.
    Vendola K, Zhou J, Wang J, Famuyiwa OA, Bievre M, Bondy CA. Androgens promote oocyte insulin-like growth factor I expression and initiation of follicle development in the primate ovary. Biol Reprod. 1999;61(2):353–7.PubMedCrossRefGoogle Scholar
  18. 18.
    Hovatta O, Silye R, Abir R, Krausz T, Winston RM. Extracellular matrix improves survival of both stored and fresh human primordial and primary ovarian follicles in long-term culture. Hum Reprod. 1997;12(5):1032–6.PubMedCrossRefGoogle Scholar
  19. 19.
    Abir R, Nitke S, Ben-Haroush A, Fisch B. In vitro maturation of human primordial ovarian follicles: clinical significance, progress in mammals, and methods for growth evaluation. Histol Histopathol. 2006;21(8):887–98.PubMedGoogle Scholar
  20. 20.
    Qureshi AI, Nussey SS, Bano G, Musonda P, Whitehead SA, Mason HD. Testosterone selectively increases primary follicles in ovarian cortex grafted onto embryonic chick membranes: relevance to polycystic ovaries. Reproduction. 2008;136(2):187–94.PubMedCrossRefGoogle Scholar
  21. 21.
    Rice S, Ojha K, Whitehead S, Mason H. Stage-specific expression of androgen receptor, follicle-stimulating hormone receptor, and anti-Müllerian hormone type 2 receptor in single, isolated, human preantral follicles: relevance to polycystic ovaries. J Clin Endocrinol Metab. 2007;92(3):1034–40.PubMedCrossRefGoogle Scholar
  22. 22.
    Smith P, Steckler TL, Veiga-Lopez A, Padmanabhan V. Developmental programming: differential effects of prenatal testosterone and dihydrotestosterone on follicular recruitment, depletion of follicular reserve, and ovarian morphology in sheep. Biol Reprod. 2009;80(4):726–36.PubMedCrossRefGoogle Scholar
  23. 23.
    Manikkam M, Steckler TL, Welch KB, Inskeep EK, Padmanabhan V. Fetal programming: prenatal testosterone treatment leads to follicular persistence/luteal defects; partial restoration of ovarian function by cyclic progesterone treatment. Endocrinology. 2006;147(4):1997–2007.PubMedCrossRefGoogle Scholar
  24. 24.
    Forsdike RA, Hardy K, Bull L, Stark J, Webber LJ, Stubbs S, et al. Disordered follicle development in ovaries of prenatally androgenized ewes. J Endocrinol. 2007;192(2):421–8.PubMedCrossRefGoogle Scholar
  25. 25.
    Dumesic DA, Patankar MS, Barnett DK, Lesnick TG, Hutcherson BA, Abbott DH. Early prenatal androgenization results in diminished ovarian reserve in adult female rhesus monkeys. Hum Reprod. 2009;24(12):3188–95.PubMedCrossRefGoogle Scholar
  26. 26.
    Durlinger AL, Visser JA, Themmen AP. Regulation of ovarian function: the role of anti-Müllerian hormone. Reproduction. 2002;124(5):601–9.PubMedCrossRefGoogle Scholar
  27. 27.
    Durlinger AL, Gruijters MJ, Kramer P, Karels B, Kumar TR, Matzuk MM, et al. Anti-Müllerian hormone attenuates the effects of FSH on follicle development in the mouse ovary. Endocrinology. 2001;142(11):4891–9.PubMedCrossRefGoogle Scholar
  28. 28.
    Pellatt L, Hanna L, Brincat M, Galea R, Brain H, Whitehead S, et al. Granulosa cell production of anti-Müllerian hormone is increased in polycystic ovaries. J Clin Endocrinol Metab. 2007;92(1):240–5.PubMedCrossRefGoogle Scholar
  29. 29.
    Stubbs SA, Hardy K, Da Silva-Buttkus P, Stark J, Webber LJ, Flanagan AM, et al. Anti-müllerian hormone protein expression is reduced during the initial stages of follicle development in human polycystic ovaries. J Clin Endocrinol Metab. 2005;90(10):5536–43.PubMedCrossRefGoogle Scholar
  30. 30.
    Urbanek M, Sam S, Legro RS, Dunaif A. Identification of a polycystic ovary syndrome susceptibility variant in fibrillin-3 and association with a metabolic phenotype. J Clin Endocrinol Metab. 2007;92(11):4191–8.PubMedCrossRefGoogle Scholar
  31. 31.
    Knight PG. Glister C.TGF-beta superfamily members and ovarian follicle development. Reproduction. 2006;132(2):191–206.PubMedCrossRefGoogle Scholar
  32. 32.
    Prodoehl MJ, Hatzirodos N, Irving-Rodgers HF, Zhao ZZ, Painter JN, Hickey TE, et al. Genetic and gene expression analyses of the polycystic ovary syndrome candidate gene fibrillin-3 and other fibrillin family members in human ovaries. Mol Hum Reprod. 2009;15(12):829–41.PubMedCrossRefGoogle Scholar
  33. 33.
    Hatzirodos N, Bayne RA, Irving-Rodgers HF, Hummitzsch K, Sabatier L, Lee S, et al. Linkage of regulators of TGF-β activity in the fetal ovary to polycystic ovary syndrome. FASEB J. 2011;25(7):2256–65.PubMedCrossRefGoogle Scholar
  34. 34.
    Hornick JE, Duncan FE, Shea LD, Woodruff TK. Isolated primate primordial follicles require a rigid physical environment to survive and grow in vitro. Hum Reprod. 2012;27(6):1801–10.PubMedCrossRefGoogle Scholar
  35. 35.
    Polson DW, Reed MJ, Franks S, Scanlon MJ, James VH. Serum 11 beta-hydroxyandrostenedione as an indicator of the source of excess androgen production in women with polycystic ovaries. J Clin Endocrinol Metab. 1988;66(5):946–50.PubMedCrossRefGoogle Scholar
  36. 36.
    Gilling-Smith C, Willis DS, Beard RW, Franks S. Hypersecretion of androstenedione by isolated thecal cells from polycystic ovaries. J Clin Endocrinol Metab. 1994;79(4):1158–65.PubMedCrossRefGoogle Scholar
  37. 37.
    Gilling-Smith C, Story H, Rogers V, Franks S. Evidence for a primary abnormality of thecal cell steroidogenesis in the polycystic ovary syndrome. Clin Endocrinol (Oxf). 1997;47(1):93–9.CrossRefGoogle Scholar
  38. 38.
    Gharani N, Waterworth DM, Batty S, White D, Gilling-Smith C, Conway GS, et al. Association of the steroid synthesis gene CYP11a with polycystic ovary syndrome and hyperandrogenism. Hum Mol Genet. 1997;6(3):397–402.PubMedCrossRefGoogle Scholar
  39. 39.
    Yen SS, Vela P, Rankin J. Inappropriate secretion of follicle-stimulating hormone and luteinizing hormone in polycystic ovarian disease. J Clin Endocrinol Metab. 1970;30(4):435–42.PubMedCrossRefGoogle Scholar
  40. 40.
    Barnes RB, Rosenfield RL, Burstein S, Ehrmann DA. Pituitary-ovarian responses to nafarelin testing in the polycystic ovary syndrome. N Engl J Med. 1989;320(9):559–65.PubMedCrossRefGoogle Scholar
  41. 41.
    Nelson VL, Legro RS, Strauss III JF, McAllister JM. Augmented androgen production is a stable steroidogenic phenotype of propagated theca cells from polycystic ovaries. Mol Endocrinol. 1999;13(6):946–57.PubMedCrossRefGoogle Scholar
  42. 42.
    Wickenheisser JK, Nelson-Degrave VL, McAllister JM. Dysregulation of cytochrome P450 17alpha-hydroxylase messenger ribonucleic acid stability in theca cells isolated from women with polycystic ovary syndrome. J Clin Endocrinol Metab. 2005;90(3):1720–7.PubMedCrossRefGoogle Scholar
  43. 43.
    Wickenheisser JK, Nelson-DeGrave VL, Quinn PG, McAllister JM. Increased cytochrome P450 17alpha-hydroxylase promoter function in theca cells isolated from patients with polycystic ovary syndrome involves nuclear factor-1. Mol Endocrinol. 2004;18(3):588–605.PubMedCrossRefGoogle Scholar
  44. 44.
    Wood JR, Nelson VL, Ho C, Jansen E, Wang CY, Urbanek M, et al. The molecular phenotype of polycystic ovary syndrome (PCOS) theca cells and new candidate PCOS genes defined by microarray analysis. J Biol Chem. 2003;278(29):26380–90.PubMedCrossRefGoogle Scholar
  45. 45.
    Bagavandoss P, Midgley Jr AR. Lack of difference between retinoic acid and retinol in stimulating progesterone production by luteinizing granulosa cells in vitro. Endocrinology. 1987;121(1):420–8.PubMedCrossRefGoogle Scholar
  46. 46.
    Talavera F, Chew BP. Comparative role of retinol, retinoic acid and beta-carotene on progesterone secretion by pig corpus luteum in vitro. J Reprod Fertil. 1988;82(2):611–5.PubMedCrossRefGoogle Scholar
  47. 47.
    Ho CK, Wood JR, Stewart DR, Ewens K, Ankener W, Wickenheisser J, et al. Increased transcription and increased messenger ribonucleic acid (mRNA) stability contribute to increased GATA6 mRNA abundance in polycystic ovary syndrome theca cells. J Clin Endocrinol Metab. 2005;90(12):6596–602.PubMedCrossRefGoogle Scholar
  48. 48.
    Wickenheisser JK, Biegler JM, Nelson-Degrave VL, Legro RS, Strauss III JF, McAllister JM. Cholesterol side-chain cleavage gene expression in theca cells: augmented transcriptional regulation and mRNA stability in polycystic ovary syndrome. PLoS One. 2012;7(11):e48963.PubMedCrossRefGoogle Scholar
  49. 49.
    Jakimiuk AJ, Weitsman SR, Navab A, Magoffin DA. Luteinizing hormone receptor, steroidogenesis acute regulatory protein, and steroidogenic enzyme messenger ribonucleic acids are overexpressed in thecal and granulosa cells from polycystic ovaries. J Clin Endocrinol Metab. 2001;86(3):1318–23.PubMedCrossRefGoogle Scholar
  50. 50.
    Lin Y, Fridström M, Hillensjö T. Insulin stimulation of lactate accumulation in isolated human granulosa-luteal cells: a comparison between normal and polycystic ovaries. Hum Reprod. 1997;12(11):2469–72.PubMedCrossRefGoogle Scholar
  51. 51.
    Rice S, Christoforidis N, Gadd C, Nikolaou D, Seyani L, Donaldson A, et al. Impaired insulin-dependent glucose metabolism in granulosa-lutein cells from anovulatory women with polycystic ovaries. Hum Reprod. 2005;20(2):373–81.PubMedCrossRefGoogle Scholar
  52. 52.
    Homburg R. Management of infertility and prevention of ovarian hyperstimulation in women with polycystic ovary syndrome. Best Pract Res Clin Obstet Gynaecol. 2004;18(5):773–88.PubMedCrossRefGoogle Scholar
  53. 53.
    Franks S, Stark J, Hardy K. Follicle dynamics and anovulation in polycystic ovary syndrome. Hum Reprod Update. 2008;14(4):367–78.PubMedCrossRefGoogle Scholar
  54. 54.
    Burger CW, Korsen T, van Kessel H, van Dop PA, Caron FJ, Schoemaker J. Pulsatile luteinizing hormone patterns in the follicular phase of the menstrual cycle, polycystic ovarian disease (PCOD) and non-PCOD secondary amenorrhea. J Clin Endocrinol Metab. 1985;61(6):1126–32.PubMedCrossRefGoogle Scholar
  55. 55.
    Willis DS, Watson H, Mason HD, Galea R, Brincat M, Franks S. Premature response to luteinizing hormone of granulosa cells from anovulatory women with polycystic ovary syndrome: relevance to mechanism of anovulation. J Clin Endocrinol Metab. 1998;83(11):3984–91.PubMedCrossRefGoogle Scholar
  56. 56.
    Hillier SG. Current concepts of roles of follicle stimulating hormone and luteinising hormone in folliculogenesis. Hum Reprod. 1994;9:188–91.PubMedGoogle Scholar
  57. 57.
    McNatty KP, Smith DM, Osathanondh R, Ryan JK. The human antral follicle, functional correlates of growth and atresia. Ann Biol Anim Biochem Biophys. 1979;19:1547–58.CrossRefGoogle Scholar
  58. 58.
    Almahbobi G, Anderiesz C, Hutchinson P, McFarlane JR, Wood C, Trounson AO. Functional integrity of granulosa cells from polycystic ovaries. Clin Endocrinol (Oxf). 1996;44(5):571–80.CrossRefGoogle Scholar
  59. 59.
    Willis D, Mason H, Gilling-Smith C, Franks S. Modulation by insulin of follicle-stimulating hormone and luteinizing hormone actions in human granulosa cells of normal and polycystic ovaries. J Clin Endocrinol Metab. 1996;81(1):302–9.PubMedCrossRefGoogle Scholar
  60. 60.
    Coffler MS, Patel K, Dahan MH, Malcom PJ, Kawashima T, Deutsch R, et al. Evidence for abnormal granulosa cell responsiveness to follicle-stimulating hormone in women with polycystic ovary syndrome. J Clin Endocrinol Metab. 2003;88(4):1742–7.PubMedCrossRefGoogle Scholar
  61. 61.
    Dunaif A. Insulin resistance and the polycystic ovary syndrome: mechanism and implications for pathogenesis. Endocr Rev. 1997;18(6):774–800.PubMedCrossRefGoogle Scholar
  62. 62.
    Conway GS. Clinical manifestations of genetic defects affecting gonadotrophins and their receptors. Clin Endocrinol (Oxf). 1996;45(6):657–63.CrossRefGoogle Scholar
  63. 63.
    Poretsky L, Kalin MF. The gonadotropic function of insulin. Endocr Rev. 1987;8(2):132–41.PubMedCrossRefGoogle Scholar
  64. 64.
    Dunaif A, Mandeli J, Fluhr H, Dobrjansky A. The impact of obesity and chronic hyperinsulinemia on gonadotropin release and gonadal steroid secretion in the polycystic ovary syndrome. J Clin Endocrinol Metab. 1988;66(1):131–9.PubMedCrossRefGoogle Scholar
  65. 65.
    Franks S, Mason HD. Polycystic ovary syndrome: interaction of follicle stimulating hormone and polypeptide growth factors in oestradiol production by human granulosa cells. J Steroid Biochem Mol Biol. 1991;1–3:405–9.CrossRefGoogle Scholar
  66. 66.
    Robinson S, Kiddy D, Gelding SV, Willis D, Niththyananthan R, Bush A, et al. The relationship of insulin insensitivity to menstrual pattern in women with hyperandrogenism and polycystic ovaries. Clin Endocrinol (Oxf). 1993;39(3):351–5.CrossRefGoogle Scholar
  67. 67.
    Kiddy DS, Hamilton-Fairley D, Bush A, Short F, Anyaoku V, Reed MJ, et al. Improvement in endocrine and ovarian function during dietary treatment of obese women with polycystic ovary syndrome. Clin Endocrinol (Oxf). 1992;36(1):105–11.CrossRefGoogle Scholar
  68. 68.
    Taylor R, Marsden PJ. Insulin sensitivity and fertility. Hum Fertil (Camb). 2000;3(1):65–9.CrossRefGoogle Scholar
  69. 69.
    Nestler JE. Role of hyperinsulinemia in the pathogenesis of the polycystic ovary syndrome, and its clinical implications. Semin Reprod Endocrinol. 1997;15(2):111–22.PubMedCrossRefGoogle Scholar
  70. 70.
    Lefebvre P, Bringer J, Renard E, Boulet F, Clouet S, Jaffiol C. Influences of weight, body fat patterning and nutrition on the management of PCOS. Hum Reprod. 1997;12 Suppl 1:72–81.PubMedCrossRefGoogle Scholar
  71. 71.
    Clark AM, Thornley B, Tomlinson L, Galletley C, Norman RJ. Weight loss in obese infertile women results in improvement in reproductive outcome for all forms of fertility treatment. Hum Reprod. 1998;13(6):1502–5.PubMedCrossRefGoogle Scholar
  72. 72.
    Dunaif A, Xia J, Book CB, Schenker E, Tang Z. Excessive insulin receptor serine phosphorylation in cultured fibroblasts and in skeletal muscle. A potential mechanism for insulin resistance in the polycystic ovary syndrome. J Clin Invest. 1995;96(2):801–10.PubMedCrossRefGoogle Scholar
  73. 73.
    Shima K, Kitayama S, Nakano R. Gonadotropin binding sites in human ovarian follicles and corpora lutea during the menstrual cycle. Obstet Gynecol. 1987;69(5):800–6.PubMedGoogle Scholar
  74. 74.
    Franks S, Mason H, Willis D. Follicular dynamics in the polycystic ovary syndrome. Mol Cell Endocrinol. 2000;163(1–2):49–52.PubMedCrossRefGoogle Scholar
  75. 75.
    Pellatt L, Rice S, Mason HD. Anti-Müllerian hormone and polycystic ovary syndrome: a mountain too high? Reproduction. 2010;139(5):825–33.PubMedCrossRefGoogle Scholar
  76. 76.
    Pellatt L, Rice S, Dilaver N, Heshri A, Galea R, Brincat M, et al. Anti-Müllerian hormone reduces follicle sensitivity to follicle-stimulating hormone in human granulosa cells. Fertil Steril. 2011;96(5):1246–51.PubMedCrossRefGoogle Scholar
  77. 77.
    Oktem O, Oktay K. The ovary: anatomy and function throughout human life. Ann N Y Acad Sci. 2008;1127:1–9.PubMedCrossRefGoogle Scholar
  78. 78.
    Hillier SG, Purohit A, Reichert Jr LE. Control of granulosa cell lactate production by follicle-stimulating hormone and androgen. Endocrinology. 1985;116(3):1163–7.PubMedCrossRefGoogle Scholar
  79. 79.
    Leese HJ, Barton AM. Production of pyruvate by isolated mouse cumulus cells. J Exp Zool. 1985;234(2):231–6.PubMedCrossRefGoogle Scholar
  80. 80.
    Harris SE, Gopichandran N, Picton HM, Leese HJ, Orsi NM. Nutrient concentrations in murine follicular fluid and the female reproductive tract. Theriogenology. 2005;64(4):992–1006.PubMedCrossRefGoogle Scholar
  81. 81.
    Downs SM. The influence of glucose, cumulus cells, and metabolic coupling on ATP levels and meiotic control in the isolated mouse oocyte. Dev Biol. 1995;167(2):502–12.PubMedCrossRefGoogle Scholar
  82. 82.
    Eppig JJ, Pendola FL, Wigglesworth K, Pendola JK. Mouse oocytes regulate metabolic cooperativity between granulosa cells and oocytes: amino acid transport. Biol Reprod. 2005;73(2):351–7.PubMedCrossRefGoogle Scholar
  83. 83.
    Leese HJ, Lenton EA. Glucose and lactate in human follicular fluid: concentrations and interrelationships. Hum Reprod. 1990;5(8):915–9.PubMedGoogle Scholar
  84. 84.
    Nandi S, Girish Kumar V, Manjunatha BM, Ramesh HS, Gupta PS. Follicular fluid concentrations of glucose, lactate and pyruvate in buffalo and sheep, and their effects on cultured oocytes, granulosa and cumulus cells. Theriogenology. 2008;69(2):186–96.PubMedCrossRefGoogle Scholar
  85. 85.
    Bryant NJ, Govers R, James DE. Regulated transport of the glucose transporter GLUT4. Nat Rev Mol Cell Biol. 2002;3(4):267–77.PubMedCrossRefGoogle Scholar
  86. 86.
    Dunaif A, Wu X, Lee A, Diamanti-Kandarakis E. Defects in insulin receptor signaling in vivo in the polycystic ovary syndrome (PCOS). Am J Physiol Endocrinol Metab. 2001;281(2):E392–9.PubMedGoogle Scholar
  87. 87.
    Fedorcsák P, Storeng R, Dale PO, Tanbo T, Abyholm T. Impaired insulin action on granulosa-lutein cells in women with polycystic ovary syndrome and insulin resistance. Gynecol Endocrinol. 2000;14(5):327–36.PubMedCrossRefGoogle Scholar
  88. 88.
    Diamanti-Kandarakis E, Papavassiliou AG. Molecular mechanisms of insulin resistance in polycystic ovary syndrome. Trends Mol Med. 2006;12(7):324–32.PubMedCrossRefGoogle Scholar
  89. 89.
    Rice S, Pellatt LJ, Bryan SJ, Whitehead SA, Mason HD. Action of metformin on the insulin-signaling pathway and on glucose transport in human granulosa cells. J Clin Endocrinol Metab. 2011;96(3):E427–35.PubMedCrossRefGoogle Scholar
  90. 90.
    Tang T, Lord JM, Norman RJ, Yasmin E, Balen AH. Insulin-sensitising drugs (metformin, rosiglitazone, pioglitazone, D-chiro-inositol) for women with polycystic ovary syndrome, oligo amenorrhoea and subfertility. Cochrane Database Syst Rev. 2012;5, CD003053.PubMedGoogle Scholar
  91. 91.
    Harris SE, Maruthini D, Tang T, Balen AH, Picton HM. Metabolism and karyotype analysis of oocytes from patients with polycystic ovary syndrome. Hum Reprod. 2010;25(9):2305–15.PubMedCrossRefGoogle Scholar
  92. 92.
    Ludwig M, Finas DF, al-Hasani S, Diedrich K, Ortmann O. Oocyte quality and treatment outcome in intracytoplasmic sperm injection cycles of polycystic ovarian syndrome patients. Hum Reprod. 1999;14(2):354–8.PubMedCrossRefGoogle Scholar
  93. 93.
    Wood JR, Dumesic DA, Abbott DH, Strauss III JF. Molecular abnormalities in oocytes from women with polycystic ovary syndrome revealed by microarray analysis. J Clin Endocrinol Metab. 2007;92(2):705–13.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of Biomedical SciencesSt. George’s, University of LondonLondonUK

Personalised recommendations