Skip to main content

Tree Species, Genetics and Regeneration for Bioenergy Feedstock in Northern Europe

  • Chapter
  • First Online:
Forest BioEnergy Production

Abstract

In this chapter we discuss tree species that exhibit rapid growth in northern Europe, i.e. the Nordic and Baltic countries. These species include both common indigenous species and introduced species. We continue with an evaluation of current breeding work and the genetic potential of species that may be suitable for biomass production in this region. Because short rotation times are commonly desired in biomass production, fast, safe and cost-efficient establishment of stands is important. By carefully considering the conditions of the regeneration sites, selecting the most improved plant material from the tree species best suited to each site, and using the best available techniques for stand establishment, we offer guidance to successful growth and cultivation of various tree species to provide society with a renewable biomass supply for energy use.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Afas NA, Marron N, van Dongen S, Laureysens I, Ceulemans R (2008) Dynamics of biomass production in a poplar coppice culture over three rotations (11 years). Forest Ecol Manag 255:1883–1891

    Article  Google Scholar 

  • Bekeris P (2011) Latvia’s forest during 20 years of independence. Riga, BALTI Group p 46

    Google Scholar 

  • Bergstedt A (2005) Træarternas anvendelse og produktionspotentiale [The use and production potential of tree species]. Dansk Skovbrugs Tidsskrift.1–2/05:342–360. Danish

    Google Scholar 

  • Bergstedt A, Jørgensen BB (1992) Hugstforsøg i Abies grandis [Thining trials in Abies grandis]. Videnblande Skovbrug. 5.6–2. Danish

    Google Scholar 

  • Binkley D (1981) Nodule biomass and acetylene reduction rates of red alder and sitka alder on Vancouver Island, BC. Can J Forest Res 11:281–286

    CAS  Google Scholar 

  • Bisoffi S, Gullberg U (1996) Poplar breeding and selection strategies. In: Stettler RF, Bradshaw HD Jr, Heilman PE, Hinckley TM (eds) Biology of Populus and its implications for management and conservation. Ottawa, Ontario. NRC Research Press, Canada, p 139–158

    Google Scholar 

  • Brázdil R, Dobrovolný P, Luterbacher J, Moberg A (2010) European climate of the past 500 years: new challenges for historical climatology. Clim Chang 101:7–40

    Article  Google Scholar 

  • Brolin A, Norén A, Ståhl EG (1995) Wood and pulp characteristics of juvenile Norway spruce: a comparison between a forest and an agricultural stand. Tappi J 78:203–214

    CAS  Google Scholar 

  • Brunberg T (2011) Forest fuel: assortments, methods and costs 2010. Uppsala, Skogforsk, Resultat no. 8; 2011, p 2 Swedish with English summary

    Google Scholar 

  • Cameron AD (1996) Managing birch woodlands for the production of quality timber. For 69:357–371

    Article  Google Scholar 

  • Chong J, Poutaraud A, Hugueney P (2009) Metabolism and roles of stilbenes in plants. Plant Sci 177:143–155

    Article  CAS  Google Scholar 

  • Danell Ö (1993) Breeding programmes in Sweden. 1. General approach. In: Lee SJ (ed) Progeny testing and breeding strategies. In: Proceedings of the Nordic group of tree breeders, Edinburgh, 6–10 Oct 1993, Forestry Authority, Scotland, p 128 (i–v)

    Google Scholar 

  • Danmarks Statistik (2012) Statistical Yearbook 2012. Copenhagen, Danmarks statistic. p 523 Danish

    Google Scholar 

  • Dickman DI (2006) Silviculture and biology of short rotation woody crops in temperate regions: then and now. Biomass Bioenerg 30:606–705

    Article  Google Scholar 

  • Dinus RJ, Payne P, Sewell MM, Chiang VL, Tuskan GA (2001) Genetic modification of short rotation poplar wood: properties for ethanol fuel and fiber production. Crit Rev Plant Sci 20:51–69

    Article  CAS  Google Scholar 

  • Directorate General of State Forests [Internet] (2012) Forest resources. Vilnius, Directorate General of State Forests at the Ministry of Environment of the Republic of Lithuania. http://www.gmu.lt.

  • Ekö PM, Larsson-Stern M, Albrektson A (2004) Growth and yield of hybrid larch (Larix × eurolepis A. Henry) in southern Sweden. Scand J For Res 19:320–328

    Article  Google Scholar 

  • Elfving B, Norgren O (1993) Volume yield superiority of lodgepole pine compared to Scots pine in Sweden. In: Lindgren D (ed) Pinus contorta from untamed forest to domesticated crop. In: Proceedings of the IUFRO meeting and Frans Kempe Symposium 1992, on Pinus contorta provenances and breeding. Swedish University of Agricultural Sciences, Department of Forest Genetics and Plant Physiology, Umeå, Rapport 11. p 69–80

    Google Scholar 

  • Elfving B, Ericsson T, Rosvall O (2001) The introduction of lodgepole pine for wood production in Sweden—a review. For Ecol Manag 141:15–29

    Article  Google Scholar 

  • Ericsson T (1994) Lodgepole pine (Pinus contorta var. latifolia) breeding in Sweden—results and prospects based on early evaluations. [Doctoral dissertation], Swedish University of Agricultural Sciences, Faculty of Forestry, Department of Forest Genetics and Plant Physiology, Umeå, p 32

    Google Scholar 

  • Ericsson T, Fries A, Gref R (2001) Genetic correlations of heartwood extractives in Pinus sylvestris progeny tests. For Genet 8:73–79

    Google Scholar 

  • Eriksson H (1976) Yield of Norway spruce in Sweden. Stockholm, Royal College of Forestry, Department of Forest Yield Research, Research Notes No 41. p 291

    Google Scholar 

  • Ferm A, Kauppi A (1990) Coppicing as a means for increasing hardwood biomass production. Biomass 22:107–121

    Article  Google Scholar 

  • Finnish Forest Research Institute (2011) Finnish statistical yearbook of forestry. Vantaa, Finnish Forest Research Institute. p 469 Finnish with English summary

    Google Scholar 

  • Finnish Forest Research Institute (2012). State of Finland’s Forests 2012: Criterion 4 Biological diversity. Introduced tree species (4.4). Vantaa, Finnish Forest Research Institute. http://www.metla.fi/metinfo/sustainability/c4-introduced-tree.htm

  • Forest Europe (2011). State of Europe’s Forests 2011—status and trends in sustainable forest management in Europe. Forest Europe Liaison Unit, Oslo, p 337

    Google Scholar 

  • Frisk A (2011) Grazing damages on larch seedlings. Skinnskatteberg, Swedish University of Agricultural Sciences, School for Forest Management, Skogsmästarprogrammet Examensarbete 2011:12. p 37 Swedish with English summary

    Google Scholar 

  • Grossnickle SC (2000) Ecophysiology of northern spruce species: the performance of planted seedlings. NRC Research Press, Ottawa, p 409

    Google Scholar 

  • Hagquist R, Hahl J (1998) Rauduskoivun siemenviljelysten jalostushyöty Etelä-ja Keski-Suomessa [Genetic gain provided by seed orchards of silver birch in southern and central Finland]. Reports from the Foundation for Forest Tree Breeding 13. p 32 In Finnish with English summary

    Google Scholar 

  • Hakkila P (1966) Investigations on the basic density of Finnish pine, spruce and birch wood. Communicationes Instituti Forestalis Fenniae 61(5):1–98

    Google Scholar 

  • Hannerz M (1998) Genetic and seasonal variation in hardiness and growth rhythm in boreal and temperate conifers. Uppsala, Skogforsk, Report No 2/1998. p 144

    Google Scholar 

  • Hansen JK (2007) Dyrkningssikker Douglasgran—en evaluering af forsøg med douglasgranfrøkilder [Safe cultivation of Douglas fir—an evaluation of trials with seed sources]. Afrapportering af produktudviklingsprojekt: “Dyrkningssikker douglasgran”, Skov & Landskab. p 20 Danish

    Google Scholar 

  • Hansen JK, Roulund H (2011) Sitkagrankloner til biomasseproduktion—potentiale i eksisterende forædlingsprogrammer [Clones of sitka spruce for biomass production—potentials in existing breeding programs]. Copenhagen University, Copenhagen, Skov & Landskab. Videnblad 3, 4–4 Danish

    Google Scholar 

  • Henriksen HA (1988) Skoven og dens dyrkning [The forest and its cultivation]. Copenhagen, Dansk Skovforening/Nyt Nordisk Forlag Arnold Busck. p 664 Danish

    Google Scholar 

  • Högbom L, Nilsson U, Örlander G (2002) Nitrate dynamics after clear felling monitored by in vivo nitrate reductase activity (NRA) and natural 15N abundance of Deschampsia flexuosa (L.) Trin. For Ecol Manag 160:273–280

    Article  Google Scholar 

  • Hultén E (1950) Atlas of the distribution of vascular plants in NW. Europe. Generalstabens Litografiska Anstalts Förlag, Stockholm, p 512

    Google Scholar 

  • IPCC (Intergovernmental Panel on Climate Change) (2007) Climate change 2007: Synthesis report. Geneva, Switzerland. p 104

    Google Scholar 

  • Jensen JS, Harding S, Roulund H (1997) Resistance to the green spruce aphid (Elatobium abietinum Walker) in progenies of Sitka spruce (Picea sitchensis (Bong) Carr.). For Ecol Manag 97:207–214

    Article  Google Scholar 

  • Jönsson AM, Bärring L (2011) Ensemble analysis of frost damage on vegetation caused by spring backlashes in a warmer Europe. Nat Hazard Earth Sys Sci 11:401–418

    Article  Google Scholar 

  • Karlman L (2010) Genetic variation in frost tolerance, juvenile growth and timber production in Russian larches (Larix Mill.)—Implications for use in Sweden. Acta Universitatis Agriculturae Sueciae 2010:30, Umeå, p 91

    Google Scholar 

  • Karlman L, Mörling T, Martinsson O (2005) Wood density, annual ring width and latewood content in larch and Scots pine. Eurasian J For Res 8(2):91–96

    Google Scholar 

  • Karlsson C, Örlander G (2000) Soil scarification shortly before a rich seed fall improves seedling establishment in seed tree stands of Pinus sylvestris. Scand J For Res 15:256–266

    Article  Google Scholar 

  • Kempeneers P, Sedano F, Seebach L, Strobl P, San-Miguel-Ayanz J (2011) Data fusion of different spatial resolution remote sensing images applied to forest-type mapping. IEEE Trans Geosci Remote Sens 49:4977–4986

    Article  Google Scholar 

  • Keskkonnateabe Keskus 2010 Yearbook of Forest 2009. Tartu, Environmental Information Center, p 217In Estonian with English summary

    Google Scholar 

  • Koski V, Rousi M (2005) A review of the promises and constraints of breeding silver birch (Betula pendula Roth) in Finland. For 78:187–198

    Google Scholar 

  • Langvall O, Nilsson U, Örlander G (2000) Frost damage to planted Norway spruce seedlings—Influence of site preparation and seedling type. For Ecol Manag 141:225–237

    Google Scholar 

  • Latvia Forest Industry Federation (2008) Forest sector in Latvia 2008. Latvia Forest Industry Federation, Riga, p 32

    Google Scholar 

  • Lee SJ (1999) Improving the timber quality of Sitka spruce through selection and breeding. For 72:123–133

    Google Scholar 

  • Lee SJ (2001) Selection of parents for the Sitka spruce breeding population in Britain and the strategy for the next breeding cycle. For 74:129–143

    Google Scholar 

  • Lee S, Matthews R (2004) An indication of the likely volume gains from improved Sitka spruce planting stock. Forestry Commission, Forestry Commission Information Note, Edinburgh, p 4

    Google Scholar 

  • Lehtosalo M, Mäkelä A, Valkonen S (2010) Regeneration and tree growth dynamics of Picea abies, Betula pendula and Betula pubescens in regeneration areas treated with spot mounding in southern Finland. Scand J For Res 25:213–223

    Article  Google Scholar 

  • Li B, Wyckoff GW, Einspahr DW (1993) Hybrid aspen performance and genetic gains. Northern J Appl For 10:117–122

    Google Scholar 

  • Ljunger Å (1972) Artkorsning och polyploidiförädling inom släktet Alnus [Interspecific crossings and polyploidy breeding in the genus Alnus]. [Licentiate thesis in Forest Genetics]. Royal College of Forestry, Stockholm, p 66 Swedish

    Google Scholar 

  • Lukkarinen AJ, Ruotsalainen S, Nikkanen T, Peltola H (2010) Survival, height growth and damages of Siberian (Larix sibirica Ledeb.) and Dahurian (L. gmelinii Rupr.) larch provenances in field trials located in southern and northern Finland. Silva Fenn 44:727–747

    Google Scholar 

  • Marklund LG (1988) Biomass functions for pine, spruce and birch in Sweden. Umeå, Swedish University of Agricultural Sciences, Dept. Forest Survey, Report no. 45. p 73 Swedish with English summary

    Google Scholar 

  • Martinsson O (1985) Douglas fir seed collection for establishment of progeny trial in Sweden. Umeå, Swedish University of Agricultural Science, Department of Silviculture, Arbetsrapport no. 2. p 12

    Google Scholar 

  • Matthews JD (1987) The silviculture of alders in Great Britain. University of Oxford, Forestry Institute, OFI Occasional Papers No. 34. p 29–38

    Google Scholar 

  • McCarthy R, Rytter L (2012) Regeneration ability of poplar—a study of stump sprouting in southern Sweden. In: FAO. International Poplar Commission Working Paper IPC/11. Rome, FAO. p 94

    Google Scholar 

  • Metla (2011) Främmande trädslag—en möjlighet eller ett hot? [Foreign tree species—a possibility or a threat?]. Vantaa, The Finnish Forest Research Institute. 2011. http://www.metla.fi/uutiskirje/rannikkometsat/2011-02/index.html. In Swedish

  • Neale DB, Kremer A (2011) Forest tree genomics: growing resources and applications. Nat Rev Genet 12:111–122

    Article  PubMed  CAS  Google Scholar 

  • Newcombe G (1996) The specificity of fungal pathogens of Populus. In: Stettler RF, Bradshaw HD Jr, Heilman PE, Hinckley TM (eds) Biology of Populus and its implications for management and conservation. NRC Research Press, Ottawa, pp 223–246

    Google Scholar 

  • Newcombe G, Ostry M, Hubbes M, Perinet P, Mottet MJ (2001) Poplar diseases. In: Dickmann DI, Isebrands JG, Eckenwalder JE, Richardson J (eds) Poplar culture in North America. NRC Research Press, Ottawa, pp 249–276

    Google Scholar 

  • Niemistö P (1996) Yield and quality of planted silver birch (Betula pendula) in Finland—Preliminary review. Norwegian J Agric Sci Suppl 24:51–59

    Google Scholar 

  • Nord-Larsen T, Meilby H, Skovsgaard JP (2009) Site-specific height growth models for six common tree species in Denmark. Scandinavian J For Res 24:194–204

    Article  Google Scholar 

  • Øyen BH (2005) Growth and yield in stands of Sitka spruce (Picea sitchensis (Bong.) Carr.) in Norway. Rapport fra skogforskningen. 4/05:1–46. In Norwegian with English summary

    Google Scholar 

  • Paris P, Mareschi L, Sabatti M, Pisanelli A, Ecosse A, Nardin F et al (2011) Comparing hybrid Populus clones for short-rotation forestry across northern Italy after two biennial rotations: survival, growth and yield. Biomass Bioenergy 35:1524–1532

    Article  Google Scholar 

  • Parviainen J, Västilä S (2011) State of Finland’s Forests 2011. Helsinki, Ministry ofAgriculture and Forestry and Finnish Forest Research Institute (Metla), Publication no. 5a/2011. p 95

    Google Scholar 

  • Peltola H, Kilpeläinen A, Sauvala K, Räisänen T, Ikonen VP (2007) Effects of early thinning regime and tree status on the radial growth and wood density of Scots pine. Silva Fenn 41:489–505

    Google Scholar 

  • Persson O (1992) A growth simulator for Scots pine (Pinus sylvestris L.) in Sweden. Garpenberg, Swedish University of Agricultural Sciences, Dept. Forest Yield Research, Report No. 31. p 206 Swedish with English summary

    Google Scholar 

  • Pinon J, Frey P, Husson C (2006) Wettability of poplar leaves influences dew formation and infection by Melampsora larici-populina. Plant Dis 90:177–184

    Article  Google Scholar 

  • Poke FS, Potts BM, Vaillancourt RE, Raymond CA (2006) Genetic parameters for lignin, extractives and decay in Eucalyptus globulus. Ann For Sci 63:813–821

    Article  CAS  Google Scholar 

  • Rönnberg J, Vollbrecht G (1999) Early infection by Heterobasidion annosum in Larix × eurolepis seedlings planted on infested sites. European J For Pathol 29:81–86

    Article  Google Scholar 

  • Rosvall O, Jansson G, Andersson B, Ericsson T, Karlsson B, Sonesson J. et al (2001) Genetic gain from present and future seed orchards and clone mixes. Uppsala, SkogForsk, Redogörelse no. 1. p 41 Swedish with English summary

    Google Scholar 

  • Rytter L (1996) Grey alder in forestry: a review. Norwegian J Agric Sci Suppl 24:61–78

    Google Scholar 

  • Rytter L (1998) Pure and mixed deciduous forest—ecology and silviculture. Uppsala, SkogForsk, Redogörelse no. 8 1998. p 62 Swedish with English summary

    Google Scholar 

  • Rytter L (2004) Production potentials of aspen, birch and alder—a review on possibilities and consequences of harvest of biomass and merchantable timber. Uppsala, Skogforsk, Redogörelse no. 4 2004. p 62 Swedish with English summary

    Google Scholar 

  • Rytter L (2006) A management regime for hybrid aspen stands combining conventional forestry techniques with early biomass harvests to exploit their rapid early growth. For Ecol Manag 236:422–426

    Article  Google Scholar 

  • Rytter L, Stener L (2005) Productivity and thinning effects in hybrid aspen (Populus tremula L. × P. tremuloides Michx.) stands in southern Sweden. For 78:285–295

    Google Scholar 

  • Rytter L, Sennerby-Forsse L, Alriksson A (2000) Natural regeneration of grey alder (Alnus incana [L.] Moench.) stands after harvest. J Sustain For 10:287–294

    Article  Google Scholar 

  • Rytter L, Karlsson A, Karlsson M, Stener LG (2008) Skötsel av björk, al och asp [Management of birch, alder and aspen]. Swedish Forest Agency, Skogsskötselserien no. 9, p 122 http://www.skogsstyrelsen.se/Aga-och-bruka/Skogsbruk/Skogsskotselserien/. Swedish

  • Rytter L, Johansson T, Karacic A, Weih M (2011a) Investigation for a Swedish research program on the genus Populus. Uppsala, Skogforsk, Arbetsrapport no. 733, p 148 Swedish with English summary

    Google Scholar 

  • Rytter L, Stener LG, Övergaard R (2011b) Odling av hybridasp och poppel [Cultivation of hybrid aspen and poplar]. Uppsala, Skogforsk, Guidance, p 40 Swedish

    Google Scholar 

  • Seppä H, Alenius T, Bradshaw RHW, Giesecke T, Heikkilä M, Muukkonen P (2009) Invasion of Norway spruce (Picea abies) and the rise of the boreal ecosystem in Fennoscandia. J Ecol 97:629–640

    Article  Google Scholar 

  • Statistics Norway (2011) Statistical Yearbook of Norway. Oslo, Statistics Norway. http://www.ssb.no/english/subjects/10/04/20/

  • St Clair JB (2006) Genetic variation in fall cold hardiness in coastal Douglas-fir in western Oregon and Washington. Can J Bot 84:1110–1121

    Article  Google Scholar 

  • Steenackers V, Strobl S, Steenackers M (1990) Collection and distribution of poplar species, hybrids and clones. Biomass 22:1–20

    Article  Google Scholar 

  • Stener LG (1998) Provincial statistics on the forest land area and growing stock of broadleaved trees in Sweden. Uppsala, SkogForsk, Redogörelse no. 4. p 61 Swedish with English summary

    Google Scholar 

  • Stener LG (2007) Utvärdering av sydsvenska avkommeförsök med klibbal [Evaluation of south Swedish progeny tests with black alder]. Uppsala, Arbetsrapport no. 649. Skogforsk, p 43 In Swedish

    Google Scholar 

  • Stener LG (2010) Tillväxt, vitalitet och densitet för kloner av hybridasp och poppel i sydsvenska fältförsök [Growth, vitality and density of clones of hybrid aspen and poplar in field trials in southern Sweden]. Uppsala, Skogforsk, Arbetsrapport no. 717. p 45 In Swedish

    Google Scholar 

  • Stener LG, Jansson G (2005) Improvement of Betula pendula by clonal and progeny testing of phenotypically selected trees. Scand J For Res 20:292–303

    Article  Google Scholar 

  • Svensson J (2011) Survival and growth of Douglas fir in southern Sweden. Swedish University of Agricultural Sciences, School for Forest Management, Skinnskatteberg, Skogsmästarprogrammet 2011:24, p 47 Swedish with English abstract

    Google Scholar 

  • Swedish Forest Agency (2012) Swedish Statistical Yearbook of Forestry 2012. Swedish Forest Agency, Jönköping, p 378

    Google Scholar 

  • Swedjemark G, Stenlid J (1995) Susceptibility of conifer and broadleaf seedlings to Swedish S and P strains of Heterobasidion annosum. Plant Pathol 44:73–79

    Article  Google Scholar 

  • Tullus A, Rytter L, Tullus T, Weih M, Tullus H (2012) Short-rotation forestry with hybrid aspen (Populus tremula L. × P. tremuloides Michx.) in Northern Europe. Scand J For Res 27:10–29

    Article  Google Scholar 

  • Vadla K (2007) Sitkagran—utbredelse, egenskaper og anvendelse [Sitka spruce – distribution, properties and use]. Viten fra Skog og landskap 2/07:27–31. In Norwegian

    Google Scholar 

  • Weih M (2004) Intensive short rotation forestry in boreal climates: present and future perspectives. Can J For Res 34:1369–1378

    Article  Google Scholar 

  • Yanchuk A, Allard G (2009) Tree improvement programmes for forest health—can they keep pace with climate changes? Unasylva 60(231/232):50–56

    Google Scholar 

Download references

Acknowledgements

This book chapter was written with the financial support from the Forestry Research Institute of Sweden (Skogforsk). Pieter Kempeneers is acknowledged for producing Fig. 2.1 for this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lars Rytter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Rytter, L., Johansson, K., Karlsson, B., Stener, LG. (2013). Tree Species, Genetics and Regeneration for Bioenergy Feedstock in Northern Europe. In: Kellomäki, S., Kilpeläinen, A., Alam, A. (eds) Forest BioEnergy Production. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8391-5_2

Download citation

Publish with us

Policies and ethics