Skip to main content

Other Fuzzy Models of Computation

  • Chapter
  • First Online:

Part of the book series: IFSR International Series on Systems Science and Engineering ((IFSR,volume 31))

Abstract

Fuzzy Turing machines are not the only way to perform computation in a vague environment. Other models of fuzzy computation are inspired by biological phenomena or, more generally, by natural phenomena. Fuzzy P systems and the fuzzy chemical abstract machine are such models of computation. Some of these models have been studied in some detail while others are just emerging proposals.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    “Intuitionistic” fuzzy sets were introduced by  Atanassov [4]. In a nutshell, every element belongs to an intuitionistic fuzzy set to a degree equal to μ and does not belong to it to a degree equal to ν while μ≠1 − ν and 0 ≤ μ + ν ≤ 1. In general, the term “intuitionistic” is considered as a misnomer.

  2. 2.

    One could say that the membership degree of a tuple (q, α, q′) “indicates the strength of membership within the relation” [75, p. 120].

  3. 3.

    “Linear logic appeared as a by-product of coherent semantics. The novelty was the emphasis on structural rules, thus individuating linear negation. Linear logic is spiritual, like classical and intuitionistic logics” [52, p. 442].

  4. 4.

    Note that \(\mathop{\mathrm{new}} x\,y\;P\) is a shorthand for \(\mathop{\mathrm{new}} x\mathop{\mathrm{new}} y\;P\).

References

  1. Atanassov, K.T.: Intuitionistic fuzzy sets. Fuzzy Set. Syst. 20(1), 87–96 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  2. Awodey, S.: Continuity and logical completeness: An application of sheaf theory and topoi. In: Benthem, J.V., Heinzmann, G., Rebuschi, M., Visser, H. (eds.) The Age of Alternative Logics, pp. 139–149. Springer (2006)

    Google Scholar 

  3. Bell, J.L.: Abstract and variable sets in category theory. In: Sica, G. (ed.) What is Category Theory?, pp. 9–16. Polimetrica Publisher, Monza (2006)

    Google Scholar 

  4. Benâtre, J.-P., Métayer, D.L.: The gamma model and its discipline of programming. Sci. Comput. Program. 15, 55–77 (1990)

    Article  Google Scholar 

  5. Benâtre, J.-P., Métayer, D.L.: Programming by multiset transformation. Commun. ACM 36(1), 98–111 (1993)

    Article  Google Scholar 

  6. Benâtre, J.-P., Fradet, P., Métayer, D.L.: Gamma and the chemical reaction model: Fifteen years after. In: Calude, C.S., Păun, G., Rozenberg, G., Salomaa, A. (eds.) Lecture Notes in Computer Science, vol. 2235, pp. 17–44. Springer, Heidelberg (2001)

    Google Scholar 

  7. Berry, G., Boudol, G.: The chemical abstract machine. Theor. Comput. Sci. 96, 217–248 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  8. Calude, C.S., Păun, G., Rozenberg, G., Salomaa, A. (eds.): Lecture Notes in Computer Science, vol. 2235. Springer, Heidelberg (2001)

    Google Scholar 

  9. Cerofolini, G., Amato, P.: Fuzzy chemistry — An axiomatic theory for general chemistry. In: IEEE International Fuzzy Systems Conference 2007 (FUZZ-IEEE 2007), London, UK (2007)

    Google Scholar 

  10. Ćirić, M., Stamenković, A., Ignjatović, J.: Factorization of fuzzy automata. In: Csuhaj-Varjú, E., Ésik, Z., (eds.) Proceedings of the Fundamentals of Computation Theory 16th International Symposium, FCT 2007, Budapest, Hungary, August 2007. Lecture Notes in Computer Science, vol. 4639, pp. 213–225. Springer, Berlin (2007)

    Google Scholar 

  11. D’Errico, L., Loreti, M.: Modeling fuzzy behaviours in concurrent systems. In: Laura, L., Italiano, G., Moggi, E. (eds.) Proceedings of the 10th Italian Conference on Theoretical Computer Science, ICTCS’07, pp. 94–105 (2007)

    Google Scholar 

  12. D’Errico, L., Loreti, M.: A Process algebra approach to fuzzy reasoning. In: Carvalho, J.P., Dubois, D., Sousa, J.M.C. (eds.) Proceedings of the Joint 2009 International Fuzzy Systems Association World Congress and 2009 European Society of Fuzzy Logic and Technology Conference, pp. 1136–1141, Lisbon, Portugal, U.K. (2009). ISBN: 978-989-95079-6-8

    Google Scholar 

  13. Eilenberg, S.: Automata, Languages, and Machines, vol. A. Academic, New York (1974)

    MATH  Google Scholar 

  14. Girard, J.-Y.: Locus Solum: From the rules of logic to the logic of rules. Math. Struct. Comput. Sci. 11, 301–506 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  15. Goldblatt, R.: Topoi: The Categorial Analysis of Logic. Dover Publications, Mineola (2006)

    Google Scholar 

  16. Klir, G.J., Yuan, B.: Fuzzy Sets and Fuzzy Logic: Theory and Applications. Prentice Hall, Upper Saddle River (1995)

    MATH  Google Scholar 

  17. Kosko, B.: Fuzziness vs. probability. Int. J. Gen. Syst. 17(2), 211–240 (1990)

    Google Scholar 

  18. Lipschitz, S.: General Topology. Schaum Publishing Co., New York (1965)

    Google Scholar 

  19. Loeb, D.: Sets with a negative number of elements. Adv. Math. 91, 64–74 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  20. Milner, R.: Communication and Concurrency. Prentice Hall, Hemel Hempstead (1989)

    MATH  Google Scholar 

  21. Milner, R.: Communicating and Mobile Systems: The π-Calculus. Cambridge University Press, Cambridge (1999)

    Google Scholar 

  22. Mordeson, J.N., Malik, D.S.: Fuzzy Automata and Languages: Theory and Applications. Chapman and Hall/CRC, Boca Raton (2002)

    Book  Google Scholar 

  23. Păun, G.: Computing with membranes. J. Comput. Syst. Sci. 61(1), 108–143 (2000)

    Article  MATH  Google Scholar 

  24. Păun, G.: Membrane Computing: An Introduction. Springer, Berlin (2002)

    Book  Google Scholar 

  25. Silberschatz, A., Galvin, P.B., Gagne, G.: Operating System Concepts. Wiley Inc., New York (2005)

    Google Scholar 

  26. Stamenković, A., Ćirić, M., Ignjatović, J.: Reduction of fuzzy automata by means of fuzzy quasi-orders. CoRR abs/1102.5451 (2011)

    Google Scholar 

  27. Syropoulos, A.: Fuzzifying P systems. Comput. J. 49(5), 619–628 (2006)

    Article  Google Scholar 

  28. Syropoulos, A.: Yet another fuzzy model for linear logic. Int. J. Uncertain. Fuzz. Knowledge-Based Syst. 14(1), 131–135 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  29. Syropoulos, A.: Hypercomputation: Computing Beyond the Church-Turing Barrier. Springer New York, Inc., Secaucus (2008)

    Book  Google Scholar 

  30. Syropoulos, A.: Fuzzy chemical abstract machines. CoRR abs/0903.3513 (2009)

    Google Scholar 

  31. Syropoulos, A.: On nonsymmetric multi-fuzzy sets. Crit. Rev. IV, 35–41 (2010)

    Google Scholar 

  32. Syropoulos, A.: Intuitionistic fuzzy P systems. Crit. Rev. V, 1–4 (2011)

    Google Scholar 

  33. Syropoulos, A.: On generalized fuzzy multisets and their use in computation. Iranian J. Fuzzy Syst. 9(2), 115–127 (2012)

    MathSciNet  Google Scholar 

  34. Tzouvaras, A.: The linear logic of multisets. Logic J. IGPL 6(6), 901–916 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  35. Vickers, S.: Topology via logic. In: Cambridge Tracts in Theoretical Computer Science, vol. 6. Cambridge University Press, Cambridge (1990)

    Google Scholar 

  36. Weihrauch, K.: Computable Analysis: An Introduction. Springer, Berlin (2000)

    Book  MATH  Google Scholar 

  37. Yager, R.R.: On the theory of bags. Int. J. Gen. Syst. 13, 23–37 (1986)

    Article  MathSciNet  Google Scholar 

  38. Zheng, X., Weihrauch, K.: The arithmetical hierarchy of real numbers. Math. Logic Quart. 47(1), 51–65 (2001)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Syropoulos, A. (2014). Other Fuzzy Models of Computation. In: Theory of Fuzzy Computation. IFSR International Series on Systems Science and Engineering, vol 31. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8379-3_5

Download citation

Publish with us

Policies and ethics